
A NEW PARADIGM FOR SOFTWARE

AND ITS DEVELOPMENT

Anthony 0. Putman and H. Joel Jeffrey

ABSTRACT

This paper presents a new paradigm for computer software and its development. It
includes a new concept of software, a new methodology, and a radically different
end product. The paradigm is to treat the software as a person engaged in the social

practices of a Community. The social practice description, an extension of the basic
process unit, is used to completely describe all that the software does and how it

does it, until reaching an action that can be done with a small, easily written program
comparable to a single skill. We have written an executive program, which selects

and carries out the appropriate version of a social practice, using the description of

the practice. The executive program works for any set of social practice descriptions;

it is not rewritten for new software. In the traditional paradigm, one produces re
quirements and design and then writes the software. In the new paradigm, the re

quirements and design (in social practice description form), plus the skill programs,

are the software. The new paradigm has been successfully used in two applications.

It appears to be much more effective in building software, and particularly well suited
for producing programs that engage in specifically human practices, such as under

standing natural language and analyzing real world knowledge.

Advances in Descriptive Psychology, Volume 4, pages 119-138.

Editors: Keith E. Davis and Thomas O. Mitchell.
Copyright © 1985 JAi Press Inc.

All rights of reproduction in any form reserved.
ISBN: 0-89232-358-2.

119

120 ANTHONY 0. PUTMAN and H. JOEL JEFFREY

The development of computer software has become an enterprise of very
substantial scale and increasing importance in today's world. Computers
have permeated every aspect of our lives in ways that were quite literally
unthinkable just 30 years ago; the explosive and continuing advances that
have been made in computer technology in this brief span of time con
stitutes a technological achievement that may well have no parallel in
recorded history. It is widely recognized, however, that the software re
quired to utilize these computers to best advantage has not kept pace with
the hardware; indeed, a "software gap" of enormous and growing pro
portions is widely acknowledged to exist.

A close inspection of the state of the art reveals a further disparity
between the development of hardware and software. The design and pro
duction of computer hardware has gone through several generations of
development since the original ENIAC. Today's computers are enor
mously faster, smaller, more reliable, and cheaper to build than their
predecessors of 30 years ago. Such advances are reflections of the enor
mously more sophisticated design and production methods of today's
hardware engineers.

The design and production of software has of course not remained static.
The development and widespread utilization of high level languages was
a substantial advance over programming in machine language. More mod
ern languages (e.g., Pascal) represent a further advance. Recent methods
of design, such as Yourdon data flow methodology (Yourdon & Con
stantine, 1979), stepwise refinement, or Jackson design methodology
(Jackson, 1975) have in many cases provided a marked improvement
(Bergland, 1981). Further, a good deal of recent work in Computer Science
has attempted to improve software production by allowing the programmer
to express what is to be done in a form somewhat closer to ordinary lan
guage and, in some cases, by preventing the programmer from writing
code that does not make sense in terms of the real world objects and
actions the code represents (Brodie & Zilles, 1981).

In spite of these advances, software production stands in marked con
trast to hardware production with respect to productivity gains. While
hardware costs have been reduced exponentially over the past three dec
ades, software costs over the same period have been reduced at best a
few percent (lnfotech, 1982). Whereas few, if any, software practitioners
would care to give up modern software languages and techniques, equally
few would claim that there has been progress comparable to that of hard
ware, or that there is any work extant which shows such promise. Software
production today remains an extraordinarily difficult, complex task, highly
resistant to the concerted efforts of a large number of talented researchers
and practitioners.

We suggest that closing the software gap requires a fundamentally new

Software 121

paradigm for computer software and its development. This paper presents

what we believe to be such a paradigm. It includes a new concept of what

software is, a new methodology for developing software, and a radically
different end product (which, nonetheless, runs on and controls computers
as software today does). Developing software within this paradigm seems
to hold promise of substantially reducing the time and effort to produce
software. As will be discussed later in this paper, there are sound logical
grounds for this claim. We acknowledge from the beginning, however,

that such a claim can only be verified through substantial experience and
actual practice. We hope that this paper will provide sufficient motivation
and knowledge to enable interested software developers to accumulate
such experience.

THE TRADITIONAL PARADIGM

The usual concept of software is that of a system (in the technical language
of Descriptive Psychology, a Configuration; See Ossorio, 1971/1978b, pp.
54-56), with its own internal structure and logic, which interfaces with
other systems or users (which have their own logic in turn). Each piece
of software has its own logic, or sense of internal coherence, which is
what makes it that piece of software and not any other. This fact, while
seldom formally represented in accounts of software, is nonetheless one
of the central distinguishing features of software and is widely, if infor
mally, acknowledged throughout the industry. (It is further a fact known
to every programmer, and decried by every programming manager, that
each piece of software's logic is extremely seductive.)

Consider, for example, the following part of a design (a close paraphrase
of an actual design document written by one of the authors):

The translator scans the source file, recognizing a "DICT" or "dom" statement.
When either is encountered, the information for the item is stored in an internal table,

of the form

name diet-flag <lorn-flag

When the structure items are encountered, the translator checks each item name in

the table, issuing an error message if the "diet-flag" or "dom-flag" is false.

Constituent processes mentioned in this design are "scanning the source
file," "storing the information for an item in an internal table," "looking
up a name in the table," and "issuing an error message." The internal
table is an object component; it has constituents "name," "diet-flag,"

and "dam-flag."

The technical device in Descriptive Psychology for representing such
a combination of objects and processes and their relations is the state of

122 ANTHONY 0. PUTMAN and H. JOEL JEFFREY

affairs unit (Ossorio, 1978c). It is the division into immediate constituent
objects and processes, and their relations, that define a given configuration;
further, the choices made in making these divisions are what cumulatively
generate the logic of the software.

Thus, when designing software within the traditional paradigm, the fun
damental questions are (a) what will the internal logic of the system be,
and (b) how will the system interface with other users and/or systems. In
answering these questions, the traditional software designer basically is
concerned with inputs, operations, and outputs. In other words, the de

signer views the software as a mechanistic, causal-deterministic system
(or, to be less precise but more clear, a machine).

(At this point, we expect that many readers will object: "But what's
wrong with that? That's exactly what a computer is-a mechanistic, causal
deterministic system, or if you prefer, a machine." We do not view this
traditional paradigm as unreasonable or wrong: we merely view it as having
certain problems and limitations that the new one does not.)

The traditional view of the social practices known as "software de
velopment" can be broken down into three stages: (a) develop the re
quirements for the software; (b) design the software; and (c) implement
the software (Horowitz, 1975; Jensen & Tonies, 1979). It is widely agreed
in the computer software field that a unified approach to these three stages
is needed, such that the outcome of the requirement stage is immediately
useful in the design stage and the outcome of the design stage is imme
diately useful in the implementation stage (Brodie & Zilles, 1981; lnfotech,
1982). Such a unified approach may exist in theory, but it is virtually
never seen in practice. There have been many attempts at the unified
approach, including requirement techniques and languages, design lan
guages, and myriads of implementation languages, all of varying degrees
of usefulness and complexity. Approaches include formalism (Gries, 1981;
Wulf, Hilfinger, & Flon, 1981), predicate calculus (Kowalski, 1979), and
many program design methodologies (Bergland, 1981). The field is in fact
quite broad and active today (Brodie & Zilles, 1981; lnfotech, 1982). None,
however, has succeeded at being the unified approach; indeed, the lack
of such success can be taken as both a fundamental shortcoming of the
current paradign of software development and a standard of adequacy of
any new paradigm which claims to replace it.

We suggest that the root of the loose connection among the tasks of
software development (requirements, design, implementation) lies in the
traditional concept of what software is. Specifically, it lies in there being

a division between the internal logic of the system and its interface with ,,.

other systems. In writing requirements, one is specifying what the system
will do, from the outside. In designing, one is dividing the system into
pieces and defining their interactions. The classic phrasing, constantly

Software 123

encountered in computer science literature and textbooks, is "Require
ments state what the system will do; design states how it will do it."

The fragment of translator design at the beginning of this section is
representative; it tells how the translator will do a certain task. The re
quirements for that task are:

The translator will check that each field in the structure has a "DICT" and a "<lorn"
statement preceding the structure itself, and issue an error message for any field that

does not.

One can, and typically does, repeat this breakdown, until one reaches
a small enough piece that one can write the code for the piece straight
forwardly. At that point, one can "implement" or "code" the software
that is, produce the actual code, in a language the computer can process,
to carry out the task given in the requirements.

Using the technical language of Descriptive Psychology, we can see
that in the case of requirements one is defining (or describing) social prac
tices; in design one is, at best, giving the social practices of a different
community, and more typically is giving state of affairs or basic object
unit descriptions (Ossorio, 1978c). Implementation is even more divorced
from the other stages, as it consists in giving purely performative de
scriptions, with no framework within which to state the relationship be
tween these descriptions and the social practices described in the require
ments and design.

It is this lack of a complete, coherent framework that is critical. One
can, and in fact often does, discuss the relation between the requirements,
design, and code, but the language (the locutions, concepts, and behaviors)
for discussing each are distinct, with no common ground (other than or
dinary language). The result is that developing requirements is a separate
enterprise from developing designs, and each is separate from the third
enterprise, coding, in which one actually produces the software.

In a nutshell, we can characterize the traditional concept of software
as drawing its boundary around the system being built. Having made that
initial move, one then defines, or refines, one's descriptions of the parts
of the software and their interactions, and the interfaces with other systems
or users. It is precisely this initial move that the new paradigm makes
differently; having made a different initial move, what follows is not merely
different, but in some cases radically so.

THE NEW PARADIGM

The paradigm we are presenting is a new concept of software and its de
velopment. It includes both a language and a methodology. It is a coherent
language such that requirement specification leads directly to, and is part

124 ANTHONY 0. PUTMAN and H. JOEL JEFFREY

of, design, which leads directly to, and is part of, implementation. The
methodology is a fully worked out, implementable method for developing
software within this new paradigm. The advantages of working within this
new paradigm stem from having software development to be one enterprise
rather than several separate ones, as is now the case.

We have seen that the traditional paradigm results from drawing the
boundary around the software itself. When this is done, the result is what
might appropriately be termed a ''technical system.'' The new paradigm
results from drawing the boundary in a different place: around the com
munity in which the software has a place. This represents a direct ac
knowledgement that software is used, either by people or other software.
There are people and other software objects that communicate and interact
with the new software: The new paradigm draws the boundary to include
the software, all the people who interact with it, and all other pieces of
software that it communicates and interacts with. In other words, the new
paradigm is to treat the software as a Person in a Community of other
Persons. 1

"Person" here is the technical concept of one who engages in the Prac
tices of a Community. We do not mean to indicate that the software is
to simulate human thinking or feeling or that it has attitudes, interests,
and so on, but rather that the software engages in social practices and
that the description of what the software does is contained in Social Prac
tice descriptions. Social Practice descriptions thus become the language
for specifying the software; as it turns out, they also serve as the language
for designing and implementing the software.

Whereas the usual view of software yields a technical system, this one
yields a human system.

The fundamental question for software production becomes, "What is
this (software) person doing in this community, and how is it doing it?"
rather than any question of internal state, memory contents, etc. As we
shall see, the form of the answer to this question is the Social Practice
description, as it is for a person of the more usual sort.

It may be useful to note an analogy between the concept of software
we are introducing and attempts to define a person in psychology in general
and Descriptive Psychology in particular. Defining a person has tradi
tionally been done by referring to some part or structure that was con
sidered to be essentially human, the possession of which defined the pos
sessor as human. This is analogous to what we have noted as the traditional
approach to software, in which what defines a particular piece of software
is its internal structure and logic. In Descriptive Psychology, on the other
hand, we note the (logical) fact that what makes an object a person is the
place it has in the practices of the human community. Specifically, a person
is someone whose behavior is paradigmatically Deliberate Action (Ossorio,

Software 125

1978a). We are introducing a parallel distinction for software: What defines
a piece of software is what it does, i.e., the practices it engages in, not
its internal structure.

To sum up, the new paradigm consists of viewing software as part of
a human system, and acting on that concept with a set of technically useful
concepts and practices, the outcome of which is a new form of software.
Let us now examine these technical elaborations and their pragmatic im
plications.

A UNIFYING LANGUAGE FOR SOFTWARE

DEVELOPMENT

In the new paradigm, the basic move is to ask, "What practices does this
software have a place in?" (a more technical rendering of, "What does
it do?"). Asking this question, per se, is hardly new; it is the very question
that leads to traditional requirements, design, and implementation, es
pecially when coupled with its natural counterpart, "How does it do it?"

What is new is the form of the answer to the question: Social Practice
descriptions, as defined in Descriptive Psychology (Ossorio, 1981), in a
technically elaborated format which is adequate for representing all of the
facts about a Social Practice. The capability of giving this sort of answer,
in a technically usable format, is the linchpin of the new paradigm.

Social Practices are, fundamentally, what people (human or software)
do. A Social Practice is "a pattern of actions engaged in by one or more
persons" (Ossorio, 1981). Everyday examples include (a) writing a paper
for a technical journal, (b) dining, (c) negotiating, (d) writing information
to a temporary file, (e) translating a program from a high-level language
to machine code, and (f) finding the outgoing line for an incoming telephone
call.

Examples (d), (e) and (f) illustrate two points. First, the actor need not
be a human (an obvious point, but one which in ordinary usage we tend
to pass over). Practice (d) could appropriately be seen as being done by
a human or piece of software; practice (e) (commonly known as compiling)
could be done by a human but is virtually always done by a compiler;
practice (f), historically, used to be done by human telephone operators
and now is almost always done by an electronic switching machine con
trolled by software.

The second point is that differing Practices constitute one of the aspects
by which one distinguishes one Community from another, and that the
concept of Social Practice is inextricably linked with the larger concept
of Community (Putman, 1981). Just as not every person plays chess or
runs marathons, not every person compiles programs or hooks telephone
circuits together. Pragmatically, the persons who communicate and interact

126 ANTHONY 0. PUTMAN and H. JOEL JEFFREY

with the software to be built form the Members of the Community. This
is the anchoring point in using the paradigm, for asking what Practices
a piece of software has a place in, is to make use of what is called technical
ly a Part Description (Ossorio, 1966); it is elliptic for, "What Practices
of which Communities does this software have a place in?" Note that
it is not at all uncommon, especially for software persons, for one to have
one place in the Practices of one Community and another place in the Prac
tices of another Community, with no larger community subsuming them
both.

The nucleus of a Social Practice description is the specification of the
Intentional Action parameters of the Practice, to wit:

W the name of the State of Affairs desired
K the distinctions one must make to engage in this Practice
KH the skills one must have to engage in this Practice
P the performance (i.e., observable episode) one engages in, in en-

gaging in this Practice

A the achievement, or outcome of engaging in this Practice
PC personal characteristics that make a difference in this Practice
S the Significance of this Practice; the larger Practice one is engaging

in, by engaging in this Practice

A major portion of giving a Social Practice description is specifying the
process aspect, the Performance. To do that, we have the basic process
unit (BPU), as defined in Ossorio (1978c, pp. 41-51) and elaborated in
Jeffrey and Putman (1983). The BPU, consisting of Stages, Elements, In
dividuals, Eligibilities, Contingencies, and Versions, codifies all of the
process aspects of a Practice and the structure of which participants in
the Practice may engage in each action in which way.

The use of the BPU as a notational device for representing, in a tech
nically useful form, the information about the Performance of a Practice
is discussed at some length in our report on the MENTOR project (Jeffrey
& Putman, 1983). In order to use Social Practice descriptions technically,
one must have a comparable representation for the remaining aspects of
the Practice: the skills, knowledge, available performances, and the con
nections of the Practice to larger contexts. That representation format
which had been developed, is the unifying language needed.

With this language, one answers the question, "What practice does this
software engage in?" In any but the most trivial of Communities, a tre
mendous amount of detailed information must be given to describe the
Practices at a technically useful level of detail. The Social Practice de
scription (SPD) format allows one to specify that information, in a way

Software 127

that the logical connections between the items of data are preserved. (For
example, the objects involved in a Practice, together with the information
on which actual historical individuals may serve as each, is specified as
part of the description of the Practice.) Further, one may specify the Prac
tice at any level of detail desired, again preserving the appropriate logical
connections between practices, subpractices, sub-subpractices, etc.

Social Practice Descriptions and Program Logic

Paradigmatically, one specifies what an ordinary human person is doing
by reference to Social Practices. When one has given Social Practice de
scriptions for the Practices that some person engages in, one has specified
everything that that person does, and all of the ways of doing each of the
things, all of the conditions under which any possible optional things will
be done, and which actual objects will fill which roles. This description
is complete (at that level of detail), since the BPU is a codification of all
of the facts about a process (Ossorio, 1978b) and the Social Practice is a
specification of the action (Ossorio, 1978a).

In other words, all of the logic of what to do at any point, and what to
use in doing it, is captured in the SPDs.

Programs, on the other hand, are traditionally viewed as nothing more
than a set of instructions to be executed in some order. Each actual set
of instructions executed is accomplishing a version of a process (or pro
cesses). The process is the Performance parameter of some Practice. In
order to ensure that the execution sequences of the program correspond
exactly to the Versions of the Practice, some of the statements in the
program have the logical task of capturing the logical constraints of what
may follow what, what to do under various circumstances, what items to
use in doing the action, etc.-that is, the logical constraints represented
in the Contingencies, Elements, Individuals, Eligibilities, and Versions of
the basic process unit. In traditional software development, a great deal
of effort and care goes into ensuring that only those sequences of instruc
tions corresponding to the Version of the Practice appropriate to the cir
cumstances will be executed.

Here is an example. The following function, written in the C language
(except for the line numbers at the extreme left), searches an existing list
of numbers for a new one. If it finds it, it returns the location of the item
in the list; if not, it returns the value -1.

I
2
3

4 find(item)
5 char item[];

char items[100] [20];

int Nitems;

128

6 {
7
8
9

10
11
12
13
14
15
16
17
18
19
20}

ANTHONY 0. PUTMAN and H. JOEL JEFFREY

inti;
int place;

place = -1;

for(i = O;
i < Nitems;

i-t· -t) {
if(strcmp(item, items[i J) = = 0) {

place = i;
break;

return(place) ;

(For expository purpose, we have written this program in a form that is

correct but not compact.)

If the variable "Nitems" has the value 3, the possible sequences of
statements that could be executed are:

10, 11, 12, 14, 15, 16, 19
10, 11, 12, 14, 13, 12, 14, 15, 16, 19
10, 11, 12, 14, 13, 12, 14, 13, 12, 14, 15, 16, 19
10, 11, 12, 14, 13, 12, 14, 13, 14, 13, 12, 19

corresponding to finding the item in the first, second, or third list position
in the list, or not finding the item in the list at all.

The Stage-Options and Contingencies of a BPU description of this pro
cess are:

• NAME: Find finds the place of an item in a list

Stages:

1. Find searches for the new item in the list
Option 1: Find finds the new item in the list
Option 2: Find discovers that the new item is not in the list

2. Find tells the caller the position of the new item in the list
3. Find tells the caller that the new item is not in the list

Contingencies:

1. Stage 2 only if Stage 1-0ption 1
2. Stage 3 only if Stage I -Option 2

In the example program, Lines 15 and 19 comprise the Performance of
the Practice named in Stage 2; lines 10 and 19 comprise the Performance

of the Practice of Stage 3; lines 11, 12, 13, and 18 control the repetition

Software 129

of Stages to produce the appropriate Version of Stage 1-Option 1; line 16
(which stops the repetition produced by the "for" statement on line 11)
is an explicit example of a statement selecting a Version: when the item
matches the list item (a Contingency), line 19 is to be done next.

Thus, the execution of a program may be seen as having two logical
functions:

• Selecting the Version of the Practice to be done;
• Carrying out the selected Version.

In the new paradigm, we are capturing all of the logic of what the (soft
ware) person is to do in Social Practice descriptions; therefore, the code
itself need contain none of it.

(At this point one may suspect that a program within the new paradigm
is going to be substantially different from a traditional program. We shall
see later that this suspicion is correct.)

Producing Software with Social Practice Descriptions

To produce software, one must design and implement it-that is, pro
duce a program that can be executed by a computer. The key conceptual
move here has been to note that Social Practice descriptions can be used
for this purpose. We have noted that making technical use of this approach
requires a technically elaborated format, or language, for giving those So
cial Practice descriptions, just as the BPU makes possible technical ap
plications of the concept of a Process (Jeffrey & Putman, 1983).

The Social Practice representation format has been developed and is
in use. Known as DIAMOND2

, it is essentially the extension to Social
Practices of the BPU. DIAMOND serves as the specification, design, and
implementation language for software. To specify a piece of software, one
specifies the Practices within which it has a place, giving SPDs in the
DIAMOND format. These Practices include, as we have noted before,
all the persons, human and otherwise, who interact or communicate with
this software, i.e., who engage in any Practice with it.

Having specified completely the Practices the software is to engage in,
one then elaborates the specifications. This means simply breaking down
each SPD into successively more detailed descriptions. Since one begins
with the SPDs from the first stage, and adds to them further descriptions
in the same format, the specification stage is in fact immediately useful
in the design stage, and design is the same enterprise, involving the same
concepts and the same practice as specification.

The breakdown of each description into more and more detailed SPDs
continues until a point is reached at which one has a Performance that
cannot be meaningfully broken down into behaviors. (Beyond this point,

130 ANTHONY 0. PUTMAN and H. JOEL JEFFREY

further breakdown would be giving movement descriptions, such as "First
I moved my right arm six inches forward, then I moved my thumb and
forefinger one inch apart.") The BPU can be used to continue the break
down if there is a point in doing so. The choice to stop the breakdown
process is almost entirely a pragmatic one (with perhaps some esthetic
component). One stops when one can simply and straightforwardly write
a program that does the Practice. Until this point, there is a meaningful
answer to, "How does it do X?"; the SPD gives that answer. At this
point, there is no "how"-that is, there is no answer in terms of "It does
A, B, and C, and those things, in that order, are a version ofX." Rather,
the software person has a program such that the execution of the program
is an instance of the Performance of X. Such a program may appropriately
be viewed as a skill of the software person being constructed. Just as
when discussing the behavior of the more usual sort of persons, there is
a point beyond which one says, "There is no how; he just knows how to
do it," so with software persons at such a point one says, "It simply
knows how to do that; there is no other how."

The ''find'' program above is an example of a program at the bottom
level of detail. A piece of software that included the Practice of finding
an item in a list of items as a Stage of another Practice would find the
item by executing ''find.'' While one could give a BPU breakdown of
finding an item in a list of items (as the Stage-Option breakdown illustrates),
one would not ordinarily do so.

It may seem somewhat arbitrary to say that "specification" stops after
the first description step. In fact, one might well raise the question of why
we are distinguishing separate tasks here at all. This is a reasonable ques
tion, because one "stage" flows naturally into the next. There is no dif
ference, logically, between the two. It would not be surprising if the spec
ification-vs.-design distinction were to wither away in the future.

WHAT DOES SOFTWARE DONE THIS WAY

LOOK LIKE?

It is commonplace, when one paradigm replaces another, for ordinary,
everyday objects to change quite substantially, even to the degree that
they may appear to have disappeared entirely, to be replaced with some
thing entirely different but with the same name. (What does your digital
quartz ''watch'' have in common with your grandfather's pocket ''watch,''
other than both being used to tell the time?) We have seen that this is a
genuinely new paradigm. It is not surprising, therefore, that the software
produced is quite different.

Software 131

Social Practice Descriptions and Program Logic Revisited

We have seen that the execution of a traditional program can be seen
as having two (logically) separate tasks: selection of the Version of the
Practice, and the carrying out of the selected Version. In traditional soft
ware these two tasks are very closely intertwined, with statements that
are part of selecting a Version juxtaposed with those that are part of doing
that version, and whose execution may come before or after those of the
other type. Indeed, it is not uncommon to have statements that are doing
both tasks. In the new paradigm, these tasks are accomplished in a different
way.

Suppose we have a set of Social Practice descriptions, as discussed
above. We can conceive of a program, an Executive, which operates as
follows:

1. Knowing which Practice it is to carry out, the Executive selects,
from the Version list in the description, the next Version. Since the Ver
sions are a list of all of the possible ways this Practice can take place
(Ossorio, 1978c), we are guaranteed that if this Practice can be done at
all, that way of doing it will appear in the Versions (subject of course to
limitations on the knowledge of the person who gave the SPD).

2. Using the Eligibilities, the Executive verifies that there is an In
dividual to instantiate each Element that appears in the Version.

3. The Executive verifies that any attributional constraints in the Con
tingencies are satisfied, checking the status of the state of affairs whose
name appears in the contingency.

4. The outcome of these steps is a Version of the Practice that is ap
propriate to the persons (human or otherwise) and their eligibilities in the
Practice, and the facts as they currently stand. The Executive now ex
amines each Stage-Option in the Version, and either finds a Version of
Stage-Option Practice, via the same steps (1) to (3), or notes that it has
a program that is the skill for carrying out the Practice. It then carries
out the Version, executing each program that comprises the skill by which
it engages in each Practice.

Such an Executive program would, essentially, embody the logic of
acting on Social Practice descriptions. It would operate independently of
any particular Practice, engaging in any Practice by finding out how (using
an SPD) or by having the relevant Know-how, a program.

Such an Executive is not merely conceivable. It has been written, and
it works. It has been tested in an actual organizational setting, with SPDs
describing the Practices of the organization, down to the level of issuing

132 ANTHONY 0. PUTMAN and H. JOEL JEFFREY

commands (including the actual commands themselves) to other software.
The first version was the MENTOR program (Jeffrey & Putman, 1983).
Further work has extended this version, particularly in the areas of adding
skills for checking the status of states of affairs and for carrying out Prac
tices. (In the tradition of "Boy Friday" and "Girl Friday," the second

version has been christened "Thing Friday", nicknamed "Friday.")
Having been written once, there is no need to write a new executive

for a new piece of software; for the new piece of software, one needs the
Social Practice descriptions and the skills.

New Paradigm Software

Software produced within the new paradigm consists of:

1. The Social Practice descriptions that describe all of the practices
this software person is to engage in. Since the descriptions include the
information in the BPU for specifying the Performance parameter of the
Practice, all of the information pertaining to how to do each Practice is
contained in these descriptions.

2. Programs that provide the software person's skills, including the
means for acquiring necessary knowledge (e.g., assigning appropriate sta
tus to the states of affairs involved).

3. The executive program, which does a major portion of the software's
work, but which is content-free. (All of the content is in the SPD data
base.)

An Example

Let us take another look at our translator example. Suppose one has a
language, "R," which includes all of the forms of the C language as well
as certain others: (a) a statement of the form "RID n" (where "n" is an
integer greater than zero), (b) a statement of the form

RD{

}

data item I

date item 2

data item n

and (c) a statement of the form
REL name {

name I number I

name 2 number 2

name k number k

Software 133

Further, each element of the REL structure is required to have a "DICT"
and "dom" declaration, preceding the REL structure. Programs in the R
language are to be translated into programs in C, as follows: C statements
remain unchanged; "RID n" is translated to "#define name n"; "REL
name {" is translated to "struct name {". (This example, as before, is a
slight modification of actual software written by one of the authors.)

The translator consists of the Social Practice descriptions and the skill
programs (plus the executive, which does not change from one software
person to the n ext), as follows (although we will only give the Stage-Op
tions of certain Practices and one of the skills):

The requirements:

• Name: The translator translates an R program into a C program

Stages:

1. The translator reads a program in the R language
2. The translator produces a program in the C language
3. The translator produces a data file containing the information in the

RD statement

The design (of Stage 2):

• Name: The translator produces a program in the C language

Stages:

1. The translator prints a C statement unchanged
2. The translator produces a "#define name" statement
3. The translator produces a "struct name" statement
4. The translator checks that each element in the REL structure has a

"DICT" and "dom" declaration

• Name: The translator checks that an element in the REL structure has a
"DICT" and "dom" declaration

Stages:

1. The translator makes a list of all elements encountered before the REL
statement

2. The translator checks each element in the REL structure against the
list of elements

• Name: The translator checks each element in the REL structure against the
list of elements

Stages:

1. The translator reads the element name from the source file line
2. The translator looks up the element name in the list by itemno = find

(name);
3. The translator issues an error message for an element

134 ANTHONY 0. PUTMAN and H. JOEL JEFFREY

Stage 2 is at the bottom level of detail. The italicized "by" in its Name
indicates a specialized form of behavior description, a procedure descrip
tion, in which one gives a different name to the Performance parameter.
The way the translator does this Stage is by executing "find," the skill
for engaging in this Practice.

Any one familiar with software as it is traditionally done will note that
this bears only slight resemblance to software as it has existed. The most
direct parallel to traditional software is the skills. The Social Practice data
base contains all of the logic of the practices the software engages in
i.e., what it is to do. From a traditional perspective, new paradigm software
appears to be a combination of requirements, several levels of design,
and a collection of what are usually called ''utility routines.''

The central point of the new paradigm is not that one is proceeding in
a top-down fashion, nor even that the language (Social Practice descrip
tions in a form comparable to the BPU for Process Descriptions) is dif
ferent. Rather, it is:

In the old paradigm, one produces requirements and design, and then writes the soft

ware. In the new paradigm, the requirements and design, plus the small skill programs,

are the software

Those familiar with programming language and operating system re
search in computer science may note that the executive program and Social
Practice description language can be seen, from that perspective, as the
long-sought universal operating system and programming language, re
spectively. Such a perspective may shed some light on why these uni
versals have been so difficult to achieve: They (logically) require an ad
equate conceptualization of action, an adequate language for representing
actions, and an appropriate embodiment of the logic of acting on the action
descriptions.

An Analogy

One can draw an analogy here which may be useful in understanding
the relationship between traditional software and new-paradigm software.
The executive program can be compared to a variable speed electric motor,
which can supply the motive force for a great variety of machines simply
by being positioned appropriately with the other equipment. With such a

motor, an equipment designer need pay no attention to how to power a
refrigerator, a watch, an elevator, etc. He need only make sure that the
equipment being designed and built allows the motor, which he takes off
the shelf, to be put in. Traditional software development is like equipment
development in which one has to design and build a specialized motor for
every application.

Software 135

Of course, such a motor does not make equipment design and construc
tion trivial. One still has to supply the proper connections for it and connect
the drive shaft appropriately. Similarly, the SPD data base has to be pro
duced, and the skill programs written, some of which will undoubtedly
be difficult and sophisticated. It could tum out that doing this is as difficult
and time consuming as traditional software production. But such a result
would be quite surprising for, as we have seen, much of the work of the
software is now being done by the executive program, which is not re
written but simply "plugged in" to the new SPDs and skills that comprise
a new piece of software. Further, the logic of what the software is doing
is contained in a format, the Social Practice description, which was de
signed for the purpose of representing the actual logical structure of ac
tions, and which has been demonstrated (Jeffrey & Putman, 1983) to be
a powerful and compact representation methodology.

METHODOLOGY

To build software using the new paradigm, one produces a complete spec
ification of the human system (the Community) of which it is a Member.
Step by step, the way in which one does that is:

1. Identify all of the users of the software, human and otherwise. (This
is specifying the Members of the Community.)

2. Specify the interactions the Members will have with the software.
This includes specifying what they are doing, what the software is doing,
and the role (or status) the software plays in these interactions. The spec
ifications are given in action terms, not metaphor, abstraction, or purely
nominal language (e.g., not "passes data to X").

For example, "A manager gets a copy of the Department budget" is
the name of an action; it is intelligible as a Social Practice as are "An
employee fills out an expense account statement," "the accounting system
sends a copy of the statement to the budget maintenance program" or
''the expense account verification program checks an expense account
statement for errors." On the other hand, "The accounting system sends
information to the budget maintenance program'' is not intelligible as a
Social Practice, much as "Gil told Will something" is not. Neither is "The
expense account verification program processes an expense account
form.''

3. This task continues until the appropriate people (the software's de
signers, appropriate managers, users, etc.) agree that the specification is
complete-i.e., that these are all of the Practices the software has a place
in.

136 ANTHONY 0. PUTMAN and H. JOEL JEFFREY

4. For each of the Practices, ask

• What knowledge (facts or discriminations of states of affairs) is re-
quired to engage in this Practice?

• What skills are required to engage in this Practice?
• What performance is needed to engage in this Practice?
• What actions does the software engage in to get each item of knowl

edge?

5. Given these knowledge and skills, can the Executive straightfor
wardly do the Practice, with (at most) a small, obvious piece of code? If
not, then this Practice is decomposed into other, smaller Practices (with
the SPD format), and the process repeated.

The outcome of this procedure is a set of Social Practice descriptions
that, together with whatever additional skill programs are needed, con
stitute the new software.

NOW WHAT?

The obvious next step is to carry out the methodology given in the previous
section with more pieces of real software. We have utilized this meth
odology twice in the afore-mentioned MENTOR and Friday projects to
excellent effect; now it needs to be used for more traditional (software)
applications. We believe it is clear that there is good reason to expect the
new paradigm to be substantially more effective in building software, but
this expectation must be tested.

Assuming that the outcome of such tests is positive, what benefits might
be expected to come from using this paradigm (other than economic ones)?
We have two hypotheses:

First, it seems to us that this paradigm would make possible software
that is larger and more complex than what can be written within the tra
ditional paradigm. For example, it is not possible today to write a program
of one billion lines of code (that works properly).

Second, the new paradigm seems to us particularly appropriate for pro
grams that engage in specifically human practices. Natural language un
derstanding, automatic fact analysis (Ossorio, 1978b), and any task in
which understanding an actual human is paramount, such as counseling
or psychotherapy, are examples. In this way, it may become possible to
achieve a long-anticipated goal of computing: the creation of an artificial
intelligence device that can appropriately be said to simulate the functions
of a (non-software) person.

Software 137

ACKNOWLEDGMENT

Portions of the material contained in this chapter were included in a paper presented

by the second author at the conference of the Society for Descriptive Psychology

in Boulder, Colorado, August, 1983. The title of the paper was, "A New Paradigm

for Software Engineering." Authors' addresses: H. Joel Jeffrey, 606 S. Washington,

Wheaton, IL 60187; Anthony 0. Putman, Descriptive Systems, 1019 Baldwin Av

enue, Ann Arbor, MI 48104.

NOTES

1. Here, and throughout this paper, we have used capitalization to indicate a technical
term from Descriptive Psychology, in hopes of making the paper more accessible to those
outside that field.

2. DIAMOND is a proprietary product of Descriptive Systems, Inc.

REFERENCES

Berland, G. D. (1981, October). A guided tour of program design methodologies. Computer,

14 (4), 13-37.
Brodie, M. L., & Zilles, S. N. (Eds.) (1981, January). Proceedings of the Workshop on

Data Abstraction, Databases, and Conceptual Modeling, 16 (1, Special Issue). (As
sociation for Computing Machinery SIGPAN [Special Interest Group on Programming
Languages].)

Gries, D. (1981). The science of programming. New York: Springer-Verlag.
Horowitz, E. (Ed.) (1975). Practical strategies for developing large software systems. Read

ing, MA: Addison-Wesley.
Infotech State of the Art Report on Programming Technology (1982). Maidenhead, Berkshire,

England: Pergamon Infotech Ltd.
Jackson, M. A. (1975). Principles of program design. New York: Academic Press.
Jensen, R. W., & Tonies, C. C. (1979). Software engineering. Englewood Cliffs, N.J.: Pren

tice-Hall.
Jeffrey, H.J., and Putman, A. 0. (1983). The MENTOR project: Replicating the functioning

of an organization. In K.E. Davis and R. Bergner (Eds.), Advances in Descriptive Psy
chology (Vol. 3, pp. 243-270) Greenwich, CT: JAI Press.

Kowalski, R. (1979). Logic for problem solving (Artifical Intelligence Series 7.) New York:
Elsevier-North Holland.

Ossorio, P. G. (1966). Persons (LRI Report No. 3). Los Angeles, CA and Boulder, CO:
Linguistic Research Institute.

Ossorio, P. G. (1978a). Meaning and symbolism (LRI Report No. 15). Whittier, CA and
Boulder, CO: Linguistic Research Institute. (Originally published in 1969 as LRI Report
No. 10. Boulder, CO: Linguistic Research Institute.)

Ossorio, P. G. (1978b). State of affairs systems (LRI Report No. 14). Whittier, CA and
Boulder, CO: Linguistic Research Institute. (Originally published in 1971 as RADC
TR-71-102, Rome Air Development Center, Rome, New York.)

Ossorio, P. G. (1978c). "What actually happens". Columbia: University of South Carolina

Press. (Originally published in an earlier version in 1971 as LRI Report No. 10a. Whittier,
CA and Boulder, CO: Linguistic Research Institute. Later listed as LRI Report No.

20.)

138 ANTHONY 0. PUTMAN and H. JOEL JEFFREY

Ossorio, P. G. (1981). Notes on behavior description. In K. E. Davis (Ed.), Advances in

Descriptive Psychology (Vol. I, pp. 13-36). Greenwich, CT: JAi Press. (Originally pub
lished in 1969 as LRI Report No. 4b. Los Angeles and Boulder, CO: Linguistic Research
Institute.)

Putman, A. 0. (1981). Communities. In K. E. Davis (Ed.), Advances in Descriptive Psy

chology (Vol. I, pp. 195-210). Greenwich, CT: JAi Press.

Wulf, W. A., Shaw, M., Hilfinger, P. N., & Flon, L. (1981). Fundamental structures of
compurer science. Reading, MA: Addison-Wesley.

Yourdon, E., & Constantine, L. L. (1979). Structured design. Englewood Cliffs, N .J.: Pren
tice-Hall.

