
THE MENTOR PROJECT:

REPLICATING THE FUNCTIONING OF AN

ORGANIZATION

H. Joel Jeffrey and Anthony 0. Putman

ABSTRACT

The MENTOR project addresses the problem of modeling a large, complex human
organization in sufficient detail for the model to be practically useful. In this project
the process of developing software in an organization of over 300 people was

studied. The project includes building a model of the software development process
in the organization and writing a program which uses the model to furnish accurate,
specific, current information needed by software developers. This information
system has been implemented. It accepts a developer's question in ordinary techni
cal English, uses the model to figure out an answer tailored to the specific devel
oper and the circumstances, and answers the developer in English. A pilot study
was carried out, in which the developers found the system to be accurate, informa
tive, and useful. The project is based on an unusual conceptualization, the human
system approach. Descriptive Psychology provides the theoretical and technical

basis for acting on this conceptualization. This chapter presents the human system
approach, the application of Descriptive Psychology to the problem, and the pilot
project in detail.

Advances in Descriptive Psychology, Volume 3, pages 243-269
Editors: Keith E. Davis and Raymond M. Bergner
Copyright © 1983 JAi Press Inc.
All rights of reproduction in any form reserved.
ISBN 0-89232-293-4

243

244 H. JOEL JEFFREY and ANTONY 0. PUTMAN

The MENTOR project is an attempt to solve a previously intractable problem:
How can we model, at sufficient depth of complexity and detail to be useful for
practical purposes, a large, complex organization, including the people and their
activities and computer software and its activities? The organization modeled is
the Toll Digital Switching Laboratory of Bell Telephone Laboratories. Bell
Telephone Laboratories is the research and development organization of Ameri
can Telephone and Telegraph, Inc.; the Toll Digital Switching Laboratory,
which includes about 340 people, is responsible for building and maintaining the
long-distance telephone switching system known as No. 4 ESS (Electronic
Switching System). The particular area of activity within that organization that
we chose as the area of investigation was the process of developing switching
system software.

The project is based on a significantly different conceptualization, which we
call the "human system" approach. This paper presents the approach, the way
we followed through on it and describes in detail the pilot study that was done to
test the feasibility of the project. The pilot study included modeling a sizeable
portion of the software development process in the Laboratory, writing a pro
gram to access that model to answer actual user questions, and trial and evalua
tion of the system by a significant body of users in the Laboratory.

The process of developing software for No. 4 ESS is large and complex.
Although the process is generally stable, its details change due to varying techni
cal needs, sufficiently often that software developers report significant difficulty
in keeping their information current. That information includes a great wealth of
knowledge about people, activities, and interactions between those activities:
writing code, debugging one's code, integration testing, developing a new fea
ture, reporting problems, telling others what you've done, filling out Failure
Reports (FRs) and Correction Reports (CRs), processing those reports, etc. A
software developer whose knowledge is too far out of date is significantly re
stricted in his ability to engage in the practices involving the knowledge; this is
particularly acute when many of the practices involve using other computer
programs, which requires having very small details exactly right.

As is often the case in large organizations, the generla level of understanding
of the software development process is (in the opinion of experts in the Laborato
ry) not what one might hope for. Because of its size and complexity, and the
large number of people who are either new or have been fairly sharply focused in
one area, Laboratory personnel generally understand the process well enough to
get the daily job done, but their understanding tends to be superficial or narrow.
When unusual cases or circumstances arise, as they inevitably do, developers
quickly find themselves having-to do things they are unfamiliar with. The level
of understanding is low enough to have a significant negative impact on the
productivity of the developers.

In addition to the difficulty of keeping up to date, experts in the Laboratory
consider it to be difficult to acquire expertise in the development process, both
for new people and those moving into a new area. It seems to take a new person

Mentor 245

approximately two full cycles of developing a new version of the No. 4 software
(about three years) to become really competent in the software development
process.

Documentation of the development process is lacking for two reasons. First, a
large portion of the knowledge is knowledge about a complex, interrelated set of
activities done by people, that is, a complex set of human behaviors. There is
little disagreement that what people need is a unifying framework for this knowl
edge, rather than simply facts or memos; this wealth of data about people and
human behavior has, until now, proven extremely resistant to all attempts to
gather it and build a useful model of it.

Second, would-be documenters have been faced with a dilemma. Since the
development process is large and complex, any documentation of it that is both
complete and detailed enough to be useful in the daily activities of developers
would be so massive as to be virtually unusable.

The MENTOR project is an attempt to deal with this need for information by
(a) gathering the information various developers have about how things really
work, (b) building a model of the development process, and (c) using that model
as the basis for a computerized system that developers can use to get answers to
their questions about the process.

The point of doing this is to reduce the number of mistakes by developers, and
to increase the developers' effectiveness in the organization by supplying miss
ing, but necessary, information. If an individual who lacks some information
about a computer program makes a change in it, he or she is very likely to make
an error. In an analogous manner, someone missing some information about the
software development process will quite probably either have to take the time to
find the information, or not take the time and make an error. The cost in time and
effort, by the developer and others, is significant.

In addition to the immediate impact of these errors and confusion, there is the
cost of one of any organization's most precious resources: the time of the com
paratively few persons who are experts on how to get things done. Several such
experts in the Laboratory reported that they had in the past spent a good deal of
time helping developers needing information and repairing damage done by
developers who had not had the proper information (or, in some cases, had not
known that there was information to get). The experts in how to get things done
are almost always those who have been in the organization longest, and it would
generally be preferable if they did not need to spend so much of their time in this
manner, because they are the ones with the most to contribute to difficult techni
cal problems, including the design of innovations.

All of this adds up to extra staff effort on development projects, extra time,
and confusion and annoyance for members of the organization-in this case,
people developing No. 4 ESS software.

Successfully meeting the software developers' need for accurate, current,
easily used information would have two important benefits. First, it would en
able developers to do things more quickly and easily, by making it easy to find

246 H. JOEL JEFFREY and ANTONY 0. PUTMAN

out what they need or want to know in order to act. Second, it would have a
significant impact on morale of the organization, since it is very difficult for
people to experience satisfaction in a confusing, annoying environment. (It
seems quite probable to us that the effect on morale would in tum have a further
impact on the productivity of the organization.)

The first step was to do a pilot project to test the approach and the technology.
This was the first time this sort of application had been attempted. The pilot
project was designed to address the following questions:

l. Could we in fact describe the software development process completely
and at a technically useful level of detail?

2. Could we in fact use the description to give people information in a useful
form? (This question very soon became, Could We write a program, with
a reasonable amount of time and effort, to answer people's real
questions?)

3. Assuming a positive answer to the above questions, would people in the
Laboratory actually use the tool?

The approach and the technology of the project are described first, then the pilot
study is presented, and finally current efforts and extensions are discussed.

HUMAN LOGIC AND PROCESS DESCRIPTIONS

There are two key differences between the MENTOR project and other ap
proaches to modeling software development: the basic approach, or perspective,
and the technical basis for following through on that approach.

Human Systems

The basis of the MENTOR project is to view the software development pro
cess as a human system, that is, as an interrelated set of activities done by people.
Accordingly, the system is best described with concepts and a technology suit
able for human systems, rather than some other sort. This does not mean that the
usual facts, objects, and processes are ignored, but rather that another set of
facts, objects, and processes will be included-facts and processess including
humans.

The human system approach contrasts fairly sharply with more typical ap

proaches. The most frequent technical approach to the problem is to build some
type of finite-state machine model. Directed graphs, flowcharts, decision table,
cause-and-effect methodology, or finite-state machines are all examples. This
approach has run into two difficulties.

Mentor 247

First, the technology is ill-suited to describing a human system, since it is not

designed to describe specifically human behavior (we shall see an example of
this shortly). As a result, attempts to use the finite-state machine model quickly
result in very complex graphs (or tables, etc.), which are not only very difficult
to use, but which, to our knowledge, have not been successfully used as a basis
for the kind of information system that would meet the needs addressed by this
project.

Second, other approaches that we are aware of are designed, intentionally, to

represent abstractions of what actually happens. However, a member of an
organization with a job to do, who needs a question answered in order to do the
job, wants an answer, not something he or she can (assuming the relevant
competence) use to figure out an answer. In other words, an abstraction is not
likely to be directly usable by a person asking a question. Therefore, the problem
of translating the abstraction into what actually happens in the organization
remains.

In order to see the kind of difficulty one must deal with in describing human
systems, consider the following example:

Two people, Gil and Wil, observe Jill sitting at a computer terminal, punching
the keys. Gil asks Wil, "What is Jill doing?" Wil, depending on his preference
and personal characteristics, could give any of the following answers:

1. Editing a file
2. Changing the source code of a program
3. Fixing a bug in a program
4. Maintaining the current release of the software

Here we have a problem. Each of these answers is a useful, informative
description; each names an activity that actually happens. Further, each descrip
tion has direct connections to very different other activities. (For example, the
next step in the activity named "editing a file" is different from the next step in
"fixing a bug".) Which, then, shall we say that Jill is doing? Further, if we are
to write a program that can answer Jill's questions about, for example, what to do
next, how will that system tell which description is "right"?

The solution to the problem, of course, is not to take the bait. What is actually
happening is that

1. Jill is editing a file; by doing this,
2. Jill is changing the source code of a program; by doing this,
3. Jill is fixing a bug in a program; by doing this,

4. Jill is maintaining the release of the software.

In other words, Jill fs engaging in all of �tivities, simultaneously.

248 H. JOEL JEFFREY and ANTONY 0. PUTMAN

Further, as one might guess from the mundane character of this example,
doing more than one thing simultaneously, rather than being unusual, is by far
the most common case in human behavior. Therefore, any model of a system
involving people that does not include this hierarchical, simultaneous character
of human behavior will be leaving out some important facts and connections to

other activities.

A primary way in which we have acted on our view of the software develop
ment process as a human system has been to develop and use a set of descriptions
of the process that are statements of what persons in the Laboratory do, and the
ways those activities interact. Thus, we have built a model of the process as a
human system. This model is the needed "blueprint" of what actually happens
in developing software in the Laboratory, and forms the critical, but up until now
missing, unifying framework for the facts and data.

Descriptive Psychology

It was clear from the outset of the project that if the human system approach
was to be more than simply a slogan or an abstract philosophy, one element was
absolutely necessary: a theory that was

1. Designed for describing human (as opposed to chemical, physical, finite
state, etc.) systems.

2. Applicable to the problem of representing what actually happens as peo
ple develop software. Theories of emotion, self-actualization, politics, and so on
might or might not be useful, but would not address the developers' need for
information.

3. Technically usable, that is, one that would allow us to give descriptions
that we could work with technically. No matter how good the descriptions were,
it seemed very unlikely that any set of ordinary English descriptions would allow
us to give developers or managers directly usable information.

Descriptive Psychology (Ossorio, 1969/1978; 1971-19786) was the only con
ceptual framework known to the authors that met these criteria, and so was the
natural choice for the technical basis for the project. The project relies tech
nically on giving descriptions of the software development process using the
basic process unit, or BPU (Ossorio, 197111978b). Since using the basic process
unit is the technical foundation of the project, the next section discusses it in
detail.

Describing Processes

The basic process unit is the primary device for reaching a technically effec
tive level of detail in describing a process (Ossorio, 197111978b, pp. 40-41). It

Mentor 249

is a means of codifying all of the information about a process, at a given level of
detail.

Rather than attempt to restate the explanation of the BPU (Ossorio,
1971 /l 978b), it seems more useful to illustrate its use, with some actual informa
tion about the software development process we are modelling. We will first
present the information discursively, and then show how it is codified in a basic
process unit. (In a few instances we will use some actual technical names without
defining them.)

Among the activities involved in developing and maintaining a No. 4 ESS
Generic (a version of the software and hardware) is the activity of finding and
fixing problems. The next paragraphs are a brief description of part of what is
involved in one step of this activity: reporting a problem.

The first step in finding and fixing a problem in No. 4 ESS is that some re
sponsible person in the Laboratory finds out about it. This can happen in four
ways: (a) Someone at Indian Hill (the location of the Laboratory) discovers a
problem and reports it by filing a Failure Report (FR) on it. (b) Someone at
Indian Hill finds a problem and tells the responsible programmer (the program
mer responsible for the part of the software at fault). (c) Someone at Indian Hill
finds the problem and tells the Group FR Coordinator of the Group responsible
for the program needing the fix about it. The Group FR Coordinator either files
the FR himself, or has the programmer file it. (d) Someone in a Field Office (a
telephone office where No. 4 ESS is installed) finds a problem and reports it to
someone in the No. 4 Electronic Switching Assistance Center (4ESAC) at Indian
Hill. Someone in 4ESAC then files an FR on the problem, or contacts someone
in the Field Support Group about it. The Field Support person then either files
the FR, contacts the responsible programmer about the problem, or has the
Group FR Coordinator for the Group responsible for the program needing the fix
file the FR.

Anyone at Indian Hill can find and report the problem. The Group FR Coordi
nator will be the FR coordinator for one of the Development Groups in the
Laboratory (Call processing, Data Administration, MAS & INWATS, Network
Management, and Trunk Maintenance).

Certain points about this information are worth noting. First, it is entirely
concerned with activities done by people. While technical elements are present
(No. 4 ESS, the fix for the problem, etc.), we are talking about human actions
here. Second, information about the ways people can do some task, the steps
involved in it, which people do which parts, and so on, is crucial to developers,
for understanding their work and for doing their jobs effectively. Finally, this
information does not exist, in written form, anywhere. It is part of what ''every
body knows", and is passed entirely by word of mouth. Of course, a great many
people do not know it, especially those new to the job.

Now let us codify this information in a basic process unit. The BPU consists of
a pair, the Name and the Description. The Name identifies the process, and is

250 H. JOEL JEFFREY and ANTONY 0. PUTMAN

used to refer to it. The Description contains the details of the process. As we
shall see, both the Name and the Description are formal items, not English text.
To identify the process, we give it a name that we, the describers, judge useful
and appropriate. "Name 1", "open data file for update", "throw a ball", "fire
a gun", and "fix a bug" are all examples of Names.

The person writing the BPU has free choice of Names. The basis for choosing
is the informative value for the person (or persons) who will be reading the
descriptions. In light of this, the describer typically chooses Names that are a
brief description of the process, as that is typically the easiest way to identify the
process to the reader. The Name of the process discussed about is "responsible
persons in the Laboratory find out about a problem".

As we noted, finding out about a problem is part of the larger activity of
finding and fixing a problem in No. 4 ESS; this larger activity is a process with
the Name, ''responsible persons find and fix a problem in a No. 4 Generic''.

Sometimes a Name is all that is needed for the use the BPU will be put to;
sometimes not. To give the details of a process, one gives the Description. This
Description has six parts: Stages, Elements, Individuals, Eligibilities, Con
tingencies, and Versions.

Stages. A process breaks down into Stages, which may be sequential or
parallel. The stages constitute a task analysis of the process; they are the sub
processes of the process being described. Stages are specified by Names; thus,
the basic information on how a process is done is given by other process Names.

This is an important difference between the basic process unit and other
approaches to describing complicated sets of activities, which sometimes follow
the Name-Description format. With other approaches, the Description is typ
ically in some form of English text (although it may be a somewhat structured
form of English). The breakdown of a process with a purely formal name into
other purely formally named processes is critical to the concept of using the basic
process unit to describe a process. This formalism is what makes it possible to
write a program to work with a set of process descriptions without the problems
of natural language understanding and artificial intelligence.

The Stages of "find and fix a problem" are:

1. Responsible persons in the Laboratory find out about a problem

2. People who keep track of problems track the course of the problem

3. The responsible programmer decides the response to the problem

4. The responsible programmer implements the chosen response to the
problem

5. People in a support group install the fix for the problem in the Generic.

Mentor 251

Each stage, in general, may be accomplished in more than one way. In our
illustration, there are four ways in which a responsible person in the Laboratory
can find out about a problem. These ways of doing the Stage are the Options. In
''find and fix a problem,'' the Options for Stage 1 are as follows:

1. Responsible persons in the Laboratory find out about a problem

1-1 a person at Indian Hill discovers a problem and reports it

1-2 a person at Indian Hill discovers a problem and has the responsible
programmer file the FR on it

1-3 a person at Indian Hill discovers a problem and has the FR Coordina
tor tell the programmer about it

1-4 a person in a No. 4 Field Office discovers a problem and reports it.

The options for Stage 4 are as follows:

4. The responsible programmer implements the chosen response to the problem

4-1 the responsible programmer produces the fix for the problem
4-2 the responsible programmer files a Not-applicable CR (a Correction

Report stating that the problem is not applicable to this version of the
software) for the problem

4-3 the responsible programmer files a Not-implemented CR (a Correction
Report stating that the problem is something that has not yet been
implemented in the software) for the problem

4-4 the responsible programmer files a Cancel CR (a Correction Report
stating that the problem report has been cancelled).

Notice that the four Options for Stage 1 are the four ways of finding out about a
problem presented in the discursive description given earlier.

The Stages and Options codify the subprocess structure of the process. Other
aspects remain, however: the state-of-affairs structure of the process. To codify
this structure one uses the Elements, Individuals, Eligibilities, and Contingencies
(Ossorio, 1971-1978b, p. 43). The last paragraph of the discursive description
of reporting a problem provides this sort of information.

Elements. We normally consider a process to have object constituents. The
Elements are these objects. The Elements in a BPU are the objects appearing in
the Names of the process, Stages, or Options. Again, they are specified by
purely formal names, chosen by the describer to be informative to the reader.
Some of the Elements in the BPU we have so far are:

252 H. JOEL JEFFREY and ANTONY 0. PUTMAN

1. person at Indian Hill
2. problem
3. fix for the problem
4. response to the problem
5. NA CR
6. NI CR

7. CC CR
8. No. 4 Generic
9. FR Coordinator

10. responsible programmer
11. people who keep track of problems.

Individuals. In an actual occurrence of a process one sees actual historical
individuals taking the places named by the Elements. For example, "No. 4
Generic" may (today) be any of the individuals named 4E4, 4E5, or 4E6. These
Individuals play the roles named by the Elements. Again, the Individuals are
given by formal names, chosen to be informative. In our example, a partial list of
the Individuals is:

1. anyone at Indian Hill
2. member of 4ESAC
3. 4E4
4. 4E5
5. 4E6
6. persons in a support group
7. the FR for the problem
8. the CR for the problem
9. incorrect behavior by the ESS machine

10. people in System Test
11 _ people in a development group
12. people in the Field Support Group
13. people in a development Department.

Eligibilities. The specification of the Eligibilities of Individuals to be Ele
ments codifies the information about which historical individuals may take which
parts in the process. Examples of Eligibilities are:

L the No. 4 Generic may be 4E4, 4E5, or 4E6

2. person at Indian Hill may be any technical staff member at Indian Hill

3. people who keep track of problems may be people in System Test, people
in a development Group, people in the Field Support Group, or people in
a development Department.

Mentor 253

Contingencies. Not all of the Stage-Option combinations are valid instances
of the process, that is, would not be considered instances of the process being
described. Valid combinations are specified by certain of the Contingencies
which specify which Stages and Options are sequential or parallel. Contingencies
are of two types: Attributional Constraints and Co-occurrence Constraints.

An Attributional Constraint specifies that the occurrence of an Option within a
Stage, or an entire Stage, depends on some Element's having an Attribute. For
example, Stage I-Option 4 (a Field Office reporting a problem) happens if and
only if the Generic is in the field. (It could be that the Generic is under
development.)

Co-occurrence Constraints specify that certain Stages, or Options of a Stage,
take place only if other Stages or Options do. For example, the programmer
produces the fix for the problem (Stage 4---0ption 1) only if, in choosing the
response to the problem, the programmer chooses the Option "decide to fix the
problem'' -Option 1 of Stage 3 of the process named ''responsible programmer
chooses the response to the problem."

The Constraints are encoded formally, so that they can easily be processed by
a program; Attributional Constraints are of the form

Stage-Option Name if Attribute

where the Attribute, again, is a purely formal name. Co-occurrence Constraints
are of the form

Stage-option Name code Stage-Option Name

where "code" is only-after, only-before, or if-and-only-if.
This formal structuring of the information makes it easy for a program to

search for things that must be done before some action-prerequisite constraints.
For example, if a person asks how to file a CR, a program can find all processes
in which this is a Stage or Option, search the list of Constraints in each of those
processes for actions that must be done before "file a CR," and then check
whether those actions have been taken, if necessary by querying the user.

Versions. Actual instances of the process being described are known as Ver
sions. Each Version is a sequence of Stage-Option Names satisfying the Con
straints. In our example, some of the Versions are:

1. 1-1, 2, 3, 4-1, 5-1
2. 1-2, 2, 3, 4-1, 5-1
3. 1-3, 2, 3, 4-1, 5-1

4. 1-4, 2, 3, 4-1, 5-1

5. 1-1, 2, 3, 4-2, 5-1

(Single numbers refer to Stages, e.g., 2 is "keeping track of the problem";
hyphenated numbers refer to Options within a stage, for example, 4-1 refers to
"fixing the problem".)

254 H. JOEL JEFFREY and ANTONY 0. PUTMAN

We have found it useful to distinguish certain types of Versions, including
paradigm Versions, preferred Versions, and error Versions. In the above list, the
first Version is a paradigm case of this process: Someone at Indian Hill discovers
the problem and reports it, people track the handling of the problem, the pro
grammer decides what to do about the problem, the programmer produces a fix

for the problem, and people in a support group install the fix. The preferred
Versions are the preferred ways to do the process, if one is Eligible. For exam
ple, if one is authorized, it is preferred to sign one's own CR. Finally, the error
Versions are ways in which the process can actually be done, but which it should
not be. For example, it is possible to take an FR number but not sign it out in the
Log meant for that purpose. Doing this causes difficulties for the person who
does it or for others. It is not supposed to happen, but does. An example of Error
Version in our example would be for a person to discover and report the problem
(Stage I-Option 1), and for people to track it (Stage 2), but for the responsible
programmer to ignore it when he is notified (error in Stage 3).

THE PILOT PROJECT

Several researchers have used Descriptive Psychology in technical applications
(Jeffrey, 1975; Johannes, 1977; Ossorio, 1966; 197111978a), including describ
ing a human system of significant size and complexity (Busch, 1974). No one,
though, had used it to both build a model of an actual human system and to write
a software package to manipulate the model. As we noted earlier, a pilot project
was carried out to address the issues of (a) the descriptive adequacy of the
approach and the basic process unit, (b) the possibility of using the model to meet
the developers' needs for information, and (c) the judgment by the developers
themselves of the usefulness of the information system. We selected a portion of
the development process that was sufficiently complex to test the approach, and
of sufficient interest in its own right that the resulting information system would
be of interest to developers. We wrote a program to answer questions developers
might typically ask, and then had a sample of developers in the Laboratory use
and evaluate the program.

Subject Matter

Within all of the practices involved in building and maintaining No. 4 ESS,

there is a set of activities involving finding bugs, reporting them, fixing them,
and getting the fixes into the software. These activities are commonly referred to
in the Laboratory as "FR/CR handling". This is the subject matter covered for
the pilot project. It ranges from high level descriptions, such as "find and fix a
problem" , down to the most concrete aspects of the development process, such
as which priority code to put in the priority code box on a form.

Mentor 255

Covering this material required about 50 basic process unit descriptions, with
399 Stage-Option names. Six levels were encompassed from the highest level
Name ("find and fix a problem in a Generic") to the lowest ("filling out special
instructions on a Correction Report").

This area was chosen primarily because it was suggested by a number of
developers as a very complex subject about which there was a great deal of
confusion. Further, FR/CR handling includes many activities done only by peo
ple: reporting problems, giving forms to other people, checking up on the han
dling of a problem, and so on, as well as filling out forms. Thus, it was
considered a good test of the adequacy of the descriptive technique, especially
for those parts of the software development process that include specifically
human activities.

Here are some examples of basic process unit descriptions (including only the
Name and the Stage-Options):

NAME: responsible people find and fix a problem in a No. 4 Generic
Stages:
• a responsible person at Indian Hill finds out about problem

Option: person at Indian Hill discovers a problem and reports it
Option: person at Indian Hill discovers a problem and has the responsi

ble programmer file the FR on it
Option: person at Indian Hill discovers a problem and has the FR

Coordinator tell the programmer about it
Option: a person in a No. 4 Field Office discovers a problem and has

someone in 4ESAC tell the programmer about it
• people who keep track of problems track the course of the problem

). • the responsible programmer decides the response to the problem
• the responsible programmer implements the response to the problem

Option: the responsible programmer fixes the problem
Option: the responsible programmer files an NA CR for the problem
Option: the responsible programmer files an NI CR for the problem
Option: the responsible programmer files a CC CR for the problem

• people in a support group install the fix for problem in No. 4 Generic
Option: people in System Test install the fix for the problem in the

Generic under development
Option: people in the Field Support Group install the fix for the prob

lem in a field Generic

NAME: person files an FR on problem
Stages:

• person gets an FR form
Option: person gets an FR form from the System Lab

Option: person gets a previously signed-out FR form

256 H. JOEL JEFFREY and ANTONY 0. PUTMAN

• person fills out the FR form
• person gets the Supervisor's signature on FR form

Option: Supervisor signs FR form
Option: a person who can sign his/her own FR signs Supervisor's

signature on FR form
• person submits FR form

Option: person puts the FR in the System Lab bin
Option: person working on Recent Change and Verify puts the FR in

the box in the W estem Electric Recent Change Group area
Option: person give the FR to Field Support Group FR Coordinator
Option: person gives the FR to Dept. 5426 FR Coordinator
Option: person working on Recent Change and Verify gives the FR to

Data Administration Group FR Coordinator

NAME: the responsible programmer fixes the problem
Stages:
• the responsible programmer produces code to fix the problem
• the responsible programmer files a PIDENT change CR
• the responsible programmer PERMs the overwrite on TSS
• TSS executes the PERMOW procedure
• the responsible programmer fills out the CR for the problem
• the responsible programmer submits the CR

Option: the responsible programmer puts the CR in the System Lab bin
Option: person working on Recent Change and Verify puts the CR in

the box in the Wes tern Recent Change Group area
Option: the responsible programmer gives the CR to the Field Support

Group FR Coordinator
Option: Dept. 5426 programmer gives the CR to the Dept. 5426 FR

Coordinator
Option: person working on Recent Change and Verify gives the CR to

the Data Administration Group FR Coordinator
• the responsible programmer carries over the CR
• the responsible programmer informs the FR Coordinator that the CR has

been filed

We can now be somewhat more specific about the size and difficulty of the
documentation problem briefly discussed earlier. Conservatively, the informa
tion in the complete BPU for the first example above could be written in about 3
to 4 pages of English text. For 50 basic process units, this would be about 150 to

200 pages of (extremely dense) English text, to completely document FR/CR
Handling in the Laboratory.

While we would then have a document, it would be almost unusable as a
source of specific, directly useful information for developers. The difficulties of

Mentor 257

looking up the needed information, and figuring out how this listing of all of the
possible things to do would apply in the developer's particular circumstances,
would be almost insurmountable. (Interestingly, we did try this approach briefly.
The complete set of BPUs were given to a few highly expert users. There
assessment was that the set of descriptions was far too unwieldy for practical
use.)

Writing Basic Process Unit Descriptions

One of the most significant and valuable results of the MENTOR project has
been the development of experience and expertise in actually writing process
descriptions. The basic process unit specifies what must be given to describe a
process. It is, however, totally content-free; it does not say anything about
standards for what constitutes a good description.

We have developed a sizable body of heuristics, rules-of-thumb, and guide
lines that address this issue. For example, one of the first rules developed was
that any Name, or Stage-Option Name, should only state something that can
straightforwardly occur. We recognized the need for this rule after examining an
early candidate for a Stage-Option Name: "The Laboratory finds out about a
problem in a Generic". This phrasing, quite common and normally taken to be
communicative, does not state something that can actually, literally, happen.
The Laboratory is not eligible to discover something; discovering is a human
action, engaged in by a person. This name was replaced by "Responsible people
in The Laboratory find out about a problem in a Generic''.

The problems one encounters with poor descriptions may be divided into two
categories. The first comprises descriptions that are uninformative or, worse,
actually confusing, which results in developers getting answers that are uninfor
mative or confusing. For example, it is uninformative to use purely nominal
names such as ''processes the CR''. While sometimes this is the best way to say
it (recall that these are rules of thumb, not hard and fast rules), someone reading
this Stage Name can tell only that something is done to the CR, but not what.

The second category comprises descriptions that, by themselves, do not seem
to be problems, but which are very difficult to compose and decompose (Os
sorio, 1971/ 1978b, p. 41). For example, at one point in the pilot project we were
considering having one description for all of the ways of filling out a CR
normal problem-handling CRs, Edit-CRs (which are used for an entirely differ
ent purpose and just happen to use the same form), and PIDENT-change CRs
(which are used for yet a third purpose). While this certainly could have been
done, the result would have been a very large and complex single description,

with many Stage-Options and many Contingencies to keep things straight.
Using very complex basic process units tends to result in serious difficulty in

the composition of basic process units. Recall that it is fundamental to the
concept of the basic process unit that the Stage-Options Names are the Names of

258 H. JOEL JEFFREY and ANTONY 0. PUTMAN

other processes. If we represent what we can recognize as distinct processes in a
single complex basic process unit, there is no way, within the BPU format, to
refer to one of the distinct processes; it would be necessary to make some
addition to the BPU. For example, a reference to a particular Version of another
BPU . .While this is certainly not difficult technically, it seemed to us that by far

the most prudent course to follow was not to tamper with the BPU for purely
technical convenience. One of the most important reasons for this choice was
that the BPU is not an ad hoc invention; it is a codification of the concept of a
process (Ossorio, 197111978b, pp. 15, 38-39). Therefore, we thought it better
to write separate BPUs for distinct processes. In the case of the many ways to fill
out a CR, for example, we described each of the distinct activities ("responding
to a problem,'' ''giving special handling instructions,'' and ''officially changing
the program considered to be at fault''), with a BPU for the process of filling out
the form at the appropriate point in each activity.

An extensive discussion of these guidelines is beyond the scope of this paper.
They are discussed in detail, along with the issue of how to train people to use the
BPU format for description, in a forthcoming paper.

User Questions

As work on the description of FR/CR handling proceeded, it quickly became
apparent that making the information available to developers would require a
program to accept a person's questions and use the descriptions to answer the
questions. As we noted above, the documentation dilemma is still present,
whether one uses discursive English or BPU descriptions; the complete descrip
tion of the software development process is so large and complex as to be almost
unusable by someone needing information to act.

If we were going to write a program to answer questions, it was crucial to find
out what questions developers actually had. We believed that developers' ques
tions would fall into a fairly small number of question types, and that we would
then be able to write a separate question-answering routine for each type, rather
than have to address the far more difficult problem of writing a general question
answenng program.

In order to find out what was actually the case, we interviewed ten developers
from various parts of the Laboratory and then analyzed the results of the inter
views. Each of the developers interviewed was asked what questions they had, or
had had, about how the development process works. Each developer furnished

about ten to fifteen questions. Half of the questions were analyzed, looking for a
small number of patterns that would include all of this half of the questions. We

found that eight patterns sufficed. These eight pattern questions were then check
ed against the other half of the questions. When the check was done, no new
question types were found. As a further check, we showed the interviewees the
eight pattern questions, and asked them how well they thought the pattern ques-

Mentor 259

tions covered the range of questions they would like to be able to ask. All of the
interviewees agreed that the list of questions covered the range quite well.

The analysis procedure was straightforward. We examined the lists of ques-
tions from the developers, looking for different types of questions. Frequently a
question type was immediately recognizable, for example, ''How do I do (some
thing)?" or "Who does (something)?" In other cases we examined possible
answers in order to get a better understanding of what the developer wanted to
know, and then noticed that the question could appropriately be treated as one of
the question patterns we already had. This was the case, for example, with most
of the "Why did this happen?" questions from the developers, which are treated
as, "How did this happen?" (This is certainly not the sort of procedure one
would follow to develop a comprehensive, statistically valid model of the infor
mation needs of a population. That, however, was not what we were doing here.
We were looking for adequate assurance that a program that could answer a fairly
small number of questions would be suitable, if it had an adequate description of
the organization. Since we knew we would be writing the program and having
developers evaluate it, we considered the procedure of analysis, combined with
checking our results with the interviewees, to provide adequate precautions. (See
Ossario, [1981] for a discussion of the precaution-assurance paradigm of

.-.. research.)
The following list of questions was developed:

1. How do I do X?

2. How do we (in general) do X?
3. What is X?

4. Who does X?
5. X has happened. What do I do now?
6. How did this X happen?
7. Who uses X?
8. What happens when I do X?

The MENTOR Program

There are two key pieces in the MENTOR project. The first is a data structure
to contain the information needed. We have discussed this in some detail, and
shown how the basic process unit does this, in the foregoing section. The second,
equally important, is the program to access the data and use it to answer a
developer's question. That program is called MENTOR. Making it possible for a
person to get useful answers to questions is, after all, the purpose of documenting
the software development process. The database of BPU descriptions gives all of
the possibilities for doing things with whatever it describes-in this case, FR/CR

handling. But a person with a question does not ordinarily want merely a list of
, possibilities. No one wants to go to an expert, ask a question, and be told,

260 H. JOEL JEFFREY and ANTONY 0. PUTMAN

"Here's all the information about that. You figure it out." To have given just the
BPU database to people would have been doing this.

A good deal of clerical work is necessary to use the BPUs to figure out an

answer that fits both the person asking the question and the circumstances. For
example, if a person asks how to do something, one must check whether the
questioner is eligible to carry out each Stage of a Version, whether all necessary
prerequisite constraints have been fulfilled (which requires looking up the BPUs
of other processes), which Attributional Constraints are involved, and which are
satisfied. The MENTOR program does this bookkeeping and place-holding
work.

A person asks MENTOR a question by typing it in ordinary English. MEN
TOR figures out the answer that fits the person and the circumstances, asking for
more information when necessary, and answers the question in English. At the
time of the pilot study, MENTOR could answer the first three of the questions
listed above.

MENTOR is not, of course, actually competent in English; it cannot actually
understand arbitrary English from a user. However, it will properly recognize
any of the developers' actual ways of talking about the development practices.
MENTOR's answers are in actual, grammatically correct English, which it com
poses after it has found the data to answer a question. The result is that, to a
developer, MENTOR appears to understand English.

Although the BPU database forms a hierarchical description of the activities
being described, the use and operation of the program is not hierarchical. A user
can directly ask any question, whether high- or low-level, without having to
proceed "top-down". To answer the question, MENTOR accesses only those
BPUs it needs; it also does no hierarchical processing. Therefore, response time
is relatively insensitive to the number of BPUs on file. (There are obvious
exceptions, of course. As we shall see, to answer some questions MENTOR
must check the Elements and Individuals of each BPU. This of course takes more
time as the number of BPUs increases.)

Design considerations. Using MENTOR is intended to compete with the
existing social practice of finding a human expert and asking. Ordinarily, when
an expert is asked a question, he or she may ask for some information, and then
gives the questioner an answer that is tailored to that person and the specific
circumstances involved. The expert does not tell the person to do something the
person is ineligible to do (e.g., sign their own CR form if they are not authorized
to do so), or something that does not fit the case. Further, the expert does not
ordinarily give a general format and tell the person to figure out the answer.

Rather than attempt to change the developers' habits and expectations about
asking questions, it was decided at the outset to have MENTOR behave like a
human expert as far as possible. Specifically, a person should be able to ask
MENTOR a question with no more specialized vocabulary than one would need
to talk to a human expert, and be given an answer specifically tailored to the

Mentor 261

person and the facts of the particular case. Further, the answer is one that the
person can act on, with no interpretation, figuring out, or other investigation at
all. (Of course, again as with a human expert, the questioner may need more
detail; people often ask an expert to give the details of how to do something. That
capability is provided.)

For example, a person who asks how to fix a bug in a Generic is told:

1. Write the code to fix the problem
2. PERM the overwrite
3. Fill out the CR
4. Submit the CR

In response to a request for the details of how to fill out the CR form,
MENTOR supplies the user with 13 (or 14, depending on the circumstances)
steps that, when carried out, result in the CR form being filled out exactly
correctly for this case.

This design differs significantly from the more common approach of writing a
manual, even an on-line manual. An on-line manual will typically give a user a
page or two of information, from which a user can, presumably, figure out an
answer. MENTOR does not function in this manner. The reason for this choice is
that this is overwhelmingly what people indicated they wanted. They do not
(they reported) want to have to figure out something about some procedure that is
basically (in their view) extraneous to their job. They want the immediately
useful information necessary to get their job done. Many were quite emphatic
about this point.

The trials seemed to bear out this decision. Most users liked being given
detailed, pointed, step-by-step information. There are, of course, individual
differences; of the twenty-five developers who evaluated MENTOR, three said
they would prefer an on-line manual. These three were all developers who had
been in the organization for six years or more.

Using MENTOR. A user wanting to ask a question calls MENTOR by
typing the word "MENTOR" on the computer terminal. MENTOR responds by
asking for the person's name. (It uses this to tailor the response to the individual
user.)

After receiving the name, MENTOR prints the question menu. Straightfor
ward algorithms for all of the questions have been developed. At the time of the
trials three of the algorithms had been implemented. (As of this writing all have
been implemented.) The menu for the trials was:

1 . How do I do X?

2. How do we (at Indian Hill) do X?
3. What is X?
4. Who is X?

262 H. JOEL JEFFREY and ANTONY 0. PUTMAN

("What is X?" and "Who is X?" are treated identically.)
The user types the number of the question desired, and MENTOR responds

with the question stem. The user fills in the stem, asking the question just as he
or she would of an actual person-in ordinary English. For example, if the user
types "1," MENTOR immediately types, "How do I," and stops, at that point

on the line. The user then continues the line where MENTOR left off, typing, for
example, "fill out the CR for this problem?"

MENTOR recognizes a set of standard phrases, which are the phrases that
make up the Stage-Option Names, and the names of the Elements and Indi
viduals. In addition, MENTOR keeps a file of alternate phrasings for each of its
standard phrases. If the user's input is not recognized as a standard phrase,
MENTOR examines its alternate phrase lists. When it finds the user's input in an
alternate phrase list, it has then recognized what the user is asking about. (In the
case of an ambiguous phrase, MENTOR will ask the user which of the pos
sibilities is meant.). For example, "The responsible programmer fixes a problem
in a Generic" is the Name of a BPU. The standard phrases in MENTOR's files
are "the responsible programmer" and "fixes a problem in a Generic." A user
might also want to say, for example, "How do I fix a bug?" When MENTOR
encounters the phrase "fix a bug," it looks it up and discovers that this means
the same thing as "fix a problem in a Generic."

Since MENTOR understands all of the ways of actually talking about the
subject matter, it appears to the user to understand English.

This very simple algorithm has proven to be adequate, because there is a
relatively limited number of ways to saying the same thing in a technical organi
zation. It is clear that MENTOR' s processing of user input could be a great deal
more sophisticated, including using the Classification Space technique (Ossorio,
1965, 1966), so that MENTOR could understand virtually anything a user would
type in. We chose not to add this sophistication, since as long as the simple
approach served there seemed little point in doing so.

After recognizing what the user has asked about, MENTOR asks for any
additional information it needs in order to figure out the answer, and then gives
the user the answer that fits the user and the facts at hand.

How do I do X? MENTOR looks up the BPU of the process the user has
asked about. It sequentially searches the Versions of the process for a Version
that this user can actually carry out in these circumstances. (This is where it uses
the user's name.) To do this, MENTOR checks whether the user is eligible to

carry out the Stage-Options making up the Version, and whether the Attribu
tional Constraints on each Stage-Option of the Version are satisfied. Where
necessary, MENTOR queries the user about what he or she can do and the facts
of the case.

MENTOR also performs another very important check: it checks for prerequi
sites of this process, and queries the user about whether they have been fulfilled.

{

Mentor 263

Any that have not, are flagged for the user, as a reminder, before the answer to
the question is given. (This is again in keeping with the practice of a human
expert answering a question; he or she knows what should have been done before
this, and tells the questioner to be sure to do it first.) For example, before one
submits a CR, the FR must have been filed, and a procedure called "PERM"
must have been carried out. MENTOR asks about these steps, and reminds the
user to first file the FR and do the PERM procedure before submitting the CR.

After answering the question, MENTOR asks the user whether he or she wants
more detail. The user may ask the following detail questions:

1. How do I do the step?
2. Who does the step?
3. What is X?
4. Who is X?

Asking about details is recursive-the user may ask for sub-details, sub-sub
details, and so on. When the user is finished with detail questions at one level,
MENTOR returns to questions about the previous level. (An entire line of ques
tioning may be abandoned by hitting the "break" key on the terminal; this
returns to the original question.)

How do we do X? Answering this question is less complex. MENTOR looks
up the BPU for the process, prints the people who do it, and gives the user a
paradigm Version of the process. No eligibility checking is done, as the user is
not asking how he or she can actually do it. However, the Contingencies are
checked, so that the Version fits the actual facts, as are the prerequisites.

What is X? This question is answered in two steps. First, MENTOR prints
out a dictionary-style answer-an ordinary English explanation from a file.
Then, if the user wants to know more, MENTOR finds all of the BPUs in which
X is an Element or an Individual. For each process, it prints the Stage-Option
Name in which X appears, and the Name of the process in which that Stage
Option appears. MENTOR places X in its widest context first, by printing the list

of uses in order of highest level (most general) first.

Who is X? This question is treated precisely like ''What is X?'' A diction
ary-style explanation is given, and then a list of all of the processes in which Xis
an Element or Individual.

At the time of the pilot study, MENTOR could answer the first three of the
questions listed above. The program was approximately 3,000 lines of code in
the C language. (At the time of this writing MENTOR can answer all of the
questions, and has some additional capabilities as well, which are discussed

264 H. JOEL JEFFREY and ANTONY 0. PUTMAN

briefly in the final section. The program is now approximately 7,000 lines of C
code.) MENTOR runs under UNIX (Note I) a widely available operating system
on minicomputers. On a Digital Equipment Corporation 11 /70 (a large minicom
puter), with approximately 20 to 25 timesharing users, typical response time is
about four to five seconds.

Trials

We now knew that the descriptive technique was technically sound, we had
covered complex actual subject matter, down to a technically useful level of
detail, and we had a program to answer questions that users had told us were of
interest to them, giving answers as a human expert does. The key question,
however, remained: Would people actually use the resulting system to answer
their questions?

Participants. A group of 25 users in the Laboratory used MENTOR and evalu
ated its answers. Of this group,

6 were very highly experienced (9 or more years),
6 were relatively new (less than I year),
13 were in the "mid-range" of experience,
6 were Associate Technical members of the Lab (the level below full Member
of Technical Staff),
2 were in management, and
3 were specially chosen experts in some area of the Development process.

This mixture of people insured covering a broad spectrum of people throughout
the Lab.

Half of the users were in the original pool of people who helped develop the
user question list, and half were people with no prior exposure to MENTOR. Of
the six very highly experienced developers, three had no prior experience with
MENTOR, as was the case for the three specially chosen experts.

The people were given access to MENTOR, told briefly what it was for
(answering questions about anything involving FR/CR handling), and invited to
use it as much as they wanted to or felt they needed to to answer the evaluation
questions. They used MENTOR by themselves, with no coaching other than for
a brief check-back after about fifteen minutes to make sure that no misunder
standing had occurred. Average use was about one hour, with a range of one-half
to over four hours.

The users then filled out a questionnaire which asked them to evaluate the
quality of MENTOR's answers and, assuming that all of the user question list
was implemented and that MENTOR covered all of the software development
process, whether this looked like a tool they would use and recommend to others.
Answers to each question were on a scale of zero to four.

Mentor
265

The actual questions asked, and the anchoring of the scale in each case, were

as follows:

1. How infonnative were MENTOR's answers? (not at all; a little; fairly;
quite; very)

2. How accurate were MENTOR's answers? (very inaccurate; somewhat
inaccurate; fairly accurate; quite accurate; very accurate)

3. If you were new to the Laboratory, how useful would MENTOR be to
you? (not at all; a little; fairly; quite; very)

4. If you were an experienced person getting into an unfamiliar area in the
Laboratory, how useful would MENTOR be to you? (not at all; a little;
quite; very)

5. How much would you use MENTOR to answer your own questions? (not
at all; a little; a fair amount; quite a bit; a great deal)

6. If you were mentoring a new person and MENTOR were available, how
much would you use it to help the new person get on board? (not at all; a
little; some; quite a bit; a great deal)

7. Would you recommend MENTOR to other people? (strongly advise
against; advise against; no opinion; recommend; recommend strongly)

8. Do you agree or disagree with expanding MENTOR's knowledge to cover
the whole software development process? (strongly disagree; disagree;
don't care; agree; strongly agree)

Results were as follows: The mean on Question 1, on how infonnative the
answers were, was 2.4 out of 4, or between "fairly infonnative" and "Quite
informative."

The mean on Question 2, accuracy, was 2. 7 out of 4, or between "fairly
accurate" and "quite accurate." Follow-up interviews with the users about this
question revealed that MENTOR actually made very few inaccurate statements
(three errors were found), but users tended to rate the accuracy lower when they

felt the answer should have been more complete.

The mean on Question 3, usefulness to new people, was 3.1 out of 4, or
"quite useful." It is significant that there was no difference in the mean for all
users, the mean for the six highly experienced users, and the new people.

The mean on Question 4, usefulness to experienced people changing areas,

was 2.6 out of 4, or between "fairly useful" and "quite useful."

The mean on Question 5, how much they would use it for their own questions,
was 1. 9 out of 4, or approximately ''a fair amount.'' The mean for the highly

266 H. JOEL JEFFREY and ANTONY 0. PUTMAN

experienced developers, who would not be expected to need MENTOR, was 1.3,
or between "a little" and "a fair amount." Excluding these six, the mean on
this question was 2.2.

The mean on Question 6, how much would they use MENTOR to mentor a
new person, was 2.9, or approximately "quite a bit."

The mean on Question 7, recommending MENTOR to others, was 3.2 out of
4, or a bit over "recommend." Of the 25 users, 22 said they would recommend

or recommend strongly; nine said they would recommend it strongly.

The mean on Question 8, expanding MENTOR's coverage, was 3.3 out of 4,
or between "agree" and "strongly agree." Of the 25 users, 21 said they agree
or strongly agree; 13 said they strongly agree with the expansion.

(A clerical oversight resulted in the anchoring of the scales for some of the
questions being somewhat uneven, in such a way as to make the evaluations
appear more negative than they would have with properly anchored scales. For
example, on Questions 6 and 7, there is more distance between "a little" and "a
fair amount" than between "a fair amount" and "quite a bit." There is a similar
problem with Questions 1 through 4. While we would not presume to try to
quantify the difference that more evenly spaced scales would make, our exam
ination, and discussion with colleagues, leads us to believe that it is appropriate
to consider the ratings conservative.)

The answer to the key question of developer reaction is that they found
MENTOR to be informative and accurate, and that they would use it and recom
mend its use to others.

SUMMARY AND CONCLUSIONS

The pilot project was undertaken to address three critical issues:

1. Is the basic process unit adequate for describing what actually happens in
developing software, completely and in detail?

2. Can we build a tool that people can use to have real questions answered?

3. If such a description and tool can be built, will people actually use it?

We addressed these issues in the strongest way possible: demonstration.

1. A complex and fairly large portion of the activities of the Laboratory
(FR/CR handling) was described. completely and in detail. The content was
deliberately chosen to be varied in level of detail, and was known at the outset to
be one about which considerable confusion existed.

Mentor 267

2. A program, MENTOR, was written to accept a question phrased in ordi
nary English and answer it in ordinary English, figuring out the answer that fits
both the user and the circumstances. Further, a good deal of work was done to
ensure that the questions are the ones users actually want to ask.

3. When a broad cross section of people in the Laboratory evaluated MEN
TOR, their assessment was that MENTOR provided accurate, informative, and
useful answers, and that they would use it and recommend its use to others.

By doing this, a firm foundation for the overall MENTOR project was estab
lished. Further, we have demonstrated the feasibility and practicality of the
human system approach and Descriptive Psychology technology to the problems
of understanding and modeling human organizations.

It should be clear that there are a number of applications for the approach and
technology. The reader is invited to make his or her own list of systems, ac
tivities, organizations, and so on, that can appropriately and profitably be viewed
as human systems. We will point out only two.

First, the situation the Laboratory faces, that is, a complex process and a
relatively low level of experience in that process on the part of people in the
Laboratory, is significantly exacerbated in cases where the software development
process is being created on a schedule only slightly ahead of the project it is
intended to support. Such situations are not uncommon in the software field; any
large, new software effort faces it to some extent. This obviously has a heavy
impact, in terms of staff effort and calendar time, on an already tight schedule.

The second application is to documenting software. Just as MENTOR docu
ments FR/CR handling completely and in detail, and will cover the entire soft
ware development process of the Laboratory in like manner, we can use the
approach and technology to document large software systems completely and in
detail. (The basic process unit, and the technology for using it that we have
developed, can be used to describe any action, whether done by a human,
machine, or program.) Documenting a system in this way results in a tool a
person can use to find out how the system works and how to use it, from high
level descriptions down to the details of how some part of the system works. In
other words, we can build a tool that can act as a human expert about the system.
The ubiquity of large software systems, and the extreme value of expertise in
how those systems really work, points to a high potential payoff in this area.

CURRENT WORK AND FUTURE DIRECTIONS

After reviewing the results of the pilot project, a management decision was made
to carry out the full MENTOR project, covering all of the software development
process and with the full capabilities of the MENTOR program. Work on the
project is in progress. At this time the MENTOR program can answer all of the

268 H. JOEL JEFFREY and ANTONY 0. PUTMAN

questions on the user question list. The BPU database now includes approx
imately eighty descriptions.

The next area of the development process to be covered was the use of a
critical software tool, the Source Overwrite System (SOS).

The same philosophy has been followed: MENTOR is intended to act as an
expert in how to use SOS. This philosophy has an interesting implication, when
applied to describing the use of software. If a human expert is asked how to use a
piece of software, she or he will ordinarily give the questioner the actual com
mands to do the job, not a command form that the person must figure out or
substitute into, and so forth. MENTOR now does exactly this. When a user asks
how to use SOS, MENTOR asks for the necessary information, and then gives
the user the actual commands to be entered to do the job. Thus, MENTOR now
has the capability of asking a person about what he or she wants to do, and then
writing the software commands to do that job.

We have found it necessary to move from the general basic process unit to a
particular form, the behavioral process unit. This is a technically usable form of
the intentional action analysis of human behavior (Ossorio, 1969/1978). Where
as the BPU is suitable for describing any process, from ice melting to a person
behaving, describing software at a level of detail to let MENTOR actually act as
an expert has called for a form of description designed for specifically human
action.

With this form of description, rather than having simply Stage-Option Names,
one specifies certain of the parameters of intentional action: Know, Know-how,
and Performance. In the behavior of a person, Know and Know-how function as
constraints; someone lacking the relevant Knowledge or Competence cannot
carry out the process in question. The Performance is the actual physical perfor
mance one does, to engage in the action named by the process Name. In the case
of using SOS, the Performance is entering the actual command on the computer.
For example, the action with the Name "The SOS user tells TSS to call SOS"
has the Performance with the Name "type SOSG program-name,CR-number."

An obvious use for the ''blueprint'' of the software development process is as
a basis for simulation. Fundamentally, we now have the basis for saying what is
to be simulated. The next step would be developing measures, that is, numbers
representing how many Individuals eligible for various Elements there are, how
long the various component processes take, how often each of the Options for a
Stage is selected, and so forth. Such a simulation appears to have a high potential
for tools of considerable value to systems analysts.

On a larger scale, we are now in a position to begin exploring simulation of the
Laboratory in its entirety, including the practices involved in supervision, man
agement, tool building, budgeting, feature planning, and requirements defini
tion. Issues here would include the adequacy of the descriptive technique for
cases where there is more '' gray area'' and judgment involved, adequacy of the
interviewing procedures for gathering the information in these areas, and re-

Mentor 269

producing human judgments. (The work of Busch [1974], Jeffrey [1975], and

Johannes [1977] is relevant to these issues, and addresses both the technical

feasibility and practicality aspects.) Simulation of the Laboratory would directly
address the needs of management.

It seems to us that the most reasonable approach to this problem is to treat the
Laboratory as a Community, as Putman (1981) has articulated the concept,
including core and other intrinsic practices, subcommunities, and locutions.
Simulating organizations, or other communities, seems to be a feasible endeavor

at this point, and one of very wide applicability and interest.

ACKNOWLEDGMENTS

Portions of the material contained in this chapter were included in two papers presented at
the conference of the Society for Descriptive Psychology in Boulder, Colorado, August,
1980. The two papers were entitled, "The MENTOR Project: Building a Rule-following
Model of an Organization," and "Rules for Writing Process Descriptions." Authors'
addresses: H. Joel Jeffrey, Bell Laboratories 4B-307, Naperville, Illinois 60549; Anthony
0. Putman, Descriptive Systems, 1019 Baldwin Avenue, Ann Arbor, Michigan 48104.

NOTE

l . UNIX is a trademark of Bell Telephone Laboratories, Inc.

REFERENCES

Busch, E. K. The Boulder police department: A descriptive study of organizational structure
function and individual behavior. Unpublished M. S. Thesis, College of Business, University of
Colorado, 1974.

Jeffrey, H. J. Information retrieval by conceptual content analysis. Technical Report 75-6, Computer
Science Department, Vanderbilt University, Nashville, Tennessee.

Joahnnes, J. D. Automatic thyroid diagnosis via simulation of physician judgment. Ph.D. Disserta
tion, Technical Report 77-4, Computer Science Department, Vanderbilt University, Nashville,
Tennessee.

Ossorio, P. G. Classification space. Multivariate Behavioral Research, 1966, 1, 479-524.
Ossorio, P. G. Dissemination research (RADC-TR-65-314). Rome Air Development Center, New

York, 1965.
Ossorio, P. G. Meaning and symbolism (LRI Report No. 15). Whittier and Boulder: Linguistic

Research Institute, 1978. (Originally published in 1969. Boulder: Linguistic Research Institue.)
Ossorio, P. G. Representation, evaluation, and research. In K. E. Davis (Ed.), Advances in

Descriptive Psychology (Vol. I). Greenwich, Conn.: JAi Press, 1981.
Ossorio, P. G. State of affairs systems (LRI Report No. 14). Whittier and Boulder: Linguistic

Research Institute, 1978. (a) (Originally published in 1971 as (RADC-TR-71-102), Rome Air
Development Center, New York.

Ossorio, P. G. "What actually happens". Columbia: University of South Carolina Press, 1978. (b)
(Originally published in an earlier version in I 971 as LRI Report No. I0a. Whittier and Boulder:
Linguistic Research Institute.)

Putman, A. 0. Communities. In K. E. Davis (Ed.), Advances in Descriptive Psychology (Vol. I).
Greenwich, Conn.: JAI Press, 1981.

