
HUMAN SYSTEMS ISSUES IN 
SOFTWARE ENGINEERING 

H. Paul Zeiger 

ABSTRACT 
The architecture, design, and construction of computer ~oftware ill a human activity. 
It is intensive in conception, imagination, description, and communication. All such, 
it is probably the most psychologically oriented of the engineering disciplines. TIW 
paper is de"Yoted fin;t to illuminating the salient features of this human activity from 
the point of view of Descriptive Psychology, with emphasis on the problems peculiar 
to software engineering. It is devoted secondly to promoting the use of Descriptive 
Psychology as 11 tool within the discipline of software engineering to cope with. tb.e 
formidable descriptive tasks encountered tb.ere. 

This paper is intended for two audiences. The first audience consists of 
persons with some familiarity with Descriptive Psychology, who have had 
some contact with computers, and who have a modicum of curiosity 
about what goes on behind the closed doors of the shops where 

Advances In Descriptive Psychology, Volum~ 5, pages 105-UL. 
Edlton: Anlhony 0. Putman and Keilh E. Davis. 
Copyright@ 1990 Descriptive Psychology PN!iilli. 
AU rlgbb oC reproduction In any Corm re~~erved. 
ISBN: 0-9625661·0·1. 

105 



106 H. PAUL ZEIGER 

computer software is produced. For these readers I hope to show, as in 
a National Geographic article, that what goes on in that alien culture is 
not so alien after all, that the practices there are driven primarily by 
human aspirations and limitations, and only secondarily by the strange 
properties of the computer itself. The second audience consists of 
professional software engineers who are interested in anything that will 
make their engineering effons go more smoothly. For these readers I 
hope to show that perspectives from Descriptive Psychology can shed 
light on cenain puzzling aspects of their work, and can point the way 
toward improved methodologies for software design and construction. 

WHY DESCRIPTIVE PSYCHOLOGY? 
When a civil engineer designs a bridge, the constraints imposed by his 
clientele on the performance of the bridge can be expressed in relatively 
simple physical terms: span, width, load-carrying capacity, and the like. 
When the bridge is built, the work plan is constrained by similar physical 
parameters: where abutments can be placed, how big a piece can be 
lifted into place at once, etc. When a software engineer designs a 
program, say a word processor, the desires of his clientele are normally 
that the program support them in some mental task whose 
characteristics are specified (usually with difficulty) in conceptual or 
behavioral terms: it must be easy to learn, and it must smoothly support 
changing your mind about what you wish to write. When the program is 
built, the work plan is constrained by how much one programmer can 
accurately visualize, by how reliably members of the work team can 
communicate complex agreements about who does what, etc. In these 
respects software engineering is the most psychologically oriented of the 
engineering disciplines. 

Moreover, as we shall show in greater detail below, all the mainstream 
tasks of the software engineer are descriptive tasks. Formally speaking, 
anything that can be represented in a calculational system (Ossorio, 
1971/1978) can be programmed. From a more practical point ofview, the 
main challenge in getting a program right is to get its desired behavior 
represented in some formalism: any formalism. For this purpose, the 
particular formalisms of Descriptive Psychology (Ossorio, 1971/1978, 
1969/1981, 1970/1981, 1979/1981) are very well-suited. For example, in 
the word processor example above, an excellent starting point for the 
design would be a paradigm case formulation (including lots of detail) 
of the process of an author writing an article; a useful model for the 
programmers to use when communicating with one another would be an 
object or configuration (Ossorio, 1971/1978) description of the text 
being worked on. Descriptive Psychology is especially valuable in such 



Software Engineering 107 

applications because it is not tied to any particular programming 
language. Software engineers tend to suffer from their own special case 
of the Whorfian Hypothesis: One who programs in Fortran thinks in 
Fortran, and thereby overlooks important features of the task at hand 
that Fortran is poor at representing. Anything we can do to break this 
kind of set is to the good. 

THE CONTEXT FOR PRODUCT DEVELOPMENT 
This section is devoted to an external view of the creation of products. 
It represents the external world of the creators of software, and thereby 
the principal constraints on what will work among their possible actions. 
The principal constituents of this world arc elaborated below. 

The Target Community 

For every product we build, there is a community that it is going out 
into. This community is characterized by its members, statuses, concepts, 
locutions, practices, and world (Putman, 1981). 

Among the statuses are those involving actual use of existing and 
proposed software products (data entry clerk), and those for which the 
competence required for the status will be to some degree embodied in 
a new product (accountant). Sometimes these come together in the same 
person, as when a graphic designer uses a desk top publishing system. 
The members of the target community expect certain statuses (e.g., 
Receivables Clerk) to be filled by humans and others (e.g., corporate 
data utility) to be filled by machines. Some products, given the current 
popularity of Artificial Intelligence, will fall on the borderline of this 
distinction, sometimes feeling like persons, sometimes like machines. 

Among the concepts of the target community are many that the 
software itself will have to understand to some degree (font and 
typeface, for a desktop publisher), and more that the builders of the 
software will have to understand (graphic design department, paste.up). 
If the software is to be at all conversational in its interactions, it will 
have to have built-in many of the locutions of the target community. The 
practices of the target community work one way before the introduction 
of the software, and a different way after. For example, tasks formerly 
done by a draftsman may be absorbed by the graphic designer when a 
desktop publishing system is introduced. New statuses, for both persons 
and machines, may have been introduced, together with new or modified 
practices, as when a business moves from paper to computer-based 
accounting. The software builders have to appreciate both sets of 
practices (before and after), and the software itself has to embody those 
practices in which it participates directly. For example, a computer·based 



108 H. PAUL ZEIGER 

accounting system will prepare the monthly financial statements; it 
thereby embodies (an alternative version of) the practice engaged in by 
persons under the paper accounting system. Anyone who installs an 
accounting sys tern without a clear understanding of both before and after 
versions of the practice, in the firm under consideration, is asking for 
trouble. 

The Creators of Software 

Into the above community come the vendors of software. They are 
outsiders to the target community, and are viewed as vendors of 
products, services, or solutions. None of these views, by itself, fits the 
case. If software is a product, it's a product with a big service 
component; if a service, it carries with it many objects to be left behind; 
and in any case it had better provide solutions to what the client sees as 
problems. The attiludc of the target community toward the vendor's 
software is usually driven by cost/benefit considerations: up-front cost 
plus cost of maintenance and enhancements plus personnel training cost 
plus cost of time of experts and consultants, versus faster delivery of 
needed knowledge, smoother organizational functioning, fewer mistakes, 
and greater productivity. Usually these benefits are intangible and 
difficult to estimate, while at least some of the costs are concrete. Any 
techniques that support more detailed organizational analysis (task 
analysis, means-end descriptions; see Ossorio, 1971/1978) are cal1ed for 
in examining these cost/benefit issues. 

The vendor needs to address the cost/benefit issues, make the benefits 
more concrete and estimatable, and above all generate accurate images 
of what the system can and cannot do. In this he is in the role of an 
actor's impresario, trying to make clear the potential contributions of an 
absent party. At the same time he has to weigh his promises against the 
cost of delivering on them--costs that can vary wildly as a result of 
apparently small changes in system capabilities. 

NEEDED ACCOMPLISHMENTS 
Somebody on the vendor's work team needs to accomplish the following 
tasks: 

1. Locate High Opportunity Target Communities. Over the last decade, 
opportunities for successful software (and hardware) introduction into 
communities has been generally overestimated. (The so-called home 
computer market is the classic example.) Sometimes this has been due 
to naive optimism on the part of technologists looking for a place to 
hawk their wares. More often it has been due to an unwillingness or 



Software Engineering 109 

inability to grasp the real practices and values of the target community, 
and to do an adequate cost/benefit analysis from the perspective of that 
community. 
2. Conceive Products Appropriate to Them. Similarly, we have had 
embarrassingly many examples of both hardware and software that were 
inappropriate to their target communities, for example, the original 
Macintosh in the business community (not powerful enough), lhe Amiga 
in the current home market (too expensive), all kinds of self-help 
software (benefits too vague). Disaster after disaster has been obvious 
in hindsight, yet none were foreseen, at least by the product builders. 
The effect of all this harsh experience upon the practices of the creators 
of software has been that now only the firms with very deep pockets will 
build a product non specn. Smaller companies stick to building products 
so desperately needed that the client is willing to put money up front. 
This practice has at least the salutary effect of providing lhc opportunity 
for checking the appropriateness of a software product continuously 
lhroughout its development. There will be more below on how this can 
be done and on the possible role of Descriptive Psychology in the 
process. 
3. Create Business Relationships with Them. At present it seems 
inconceivable that a successful software product could be developed 
without the close involvement of members of the target community 
throughout the entire development process. For the reasons why, see the 
next section. 
4. Capture the Needed Knowledge and Competence. Persons acquire 
knowledge by observation and contemplation, and competence by 
practice and experience (Ossorio, 1969/1981, p. 32). Software acquires 
both, as of this writing, by its builder's building them in. Some of the 
researchers in Artificial Intelligence are trying to change this, but the 
fruits of these labors seem unlikely to hit the commercial market for 
several years. There is, however, an important element common to lhe 
acquisition of competence by both persons and software: Actual 
participation (perhaps with restricted status) in the practices of the target 
community is necessary in order to generate the feedback needed to get the 
behavior right. For persons, this is done by apprenticeship, with the 
apprentice learning on his own as he goes. For software, it is done by 
testing mockups and prototypes in the field environment, with lhe 
~learning" accomplished by the programmers who build the discovered 
corrections into the behavior of the software. It makes sense to say that 
by these means the software acquires the knowledge and competence 
needed to do its job right. 

But it takes a major acquisition of knowledge and competence just to 
get a product to the point where it is eligible for even a limited field 



110 H. PAUL ZEIGER 

trial. The key ingredient in capturing this knowledge and competence 
from the target community is again participation, but this time it is 
participation of the builders and the clients in each other's communities. 
For example, the software vendor needs to create activities in which 
both system builders and members of the target community participate. 
These can include observation of the target community, interviews, and 
walk-throughs of practices; shows about proposed system behavior, 
walk-throughs of designs, and critiquing of mockups, diagrams, 
spedfications, and prototypes. Often, it will (and should) feel to the 
target community like bringing a new person on board. 
5. Embody Them in Working Products. The goal is to come up with a 
working product that meets the needs of the target community, is 
appreciated by that community, and is reliable and maintainable; and do 
so within the limitations of allocated resources. In addition, software, 
like a human worker, has to grow and change with the job, and it should 
be possible for this to happen at reasonable incremental costs. 
Experience has shown all this to constitute a very challenging 
undertaking; many products fall by the wayside. (Indeed, my preference 
in software for my personal use is for programs that have survived for 
at least a year in a community of at least 10,000 active users.) 

To build even a minimally satisfactory product calls for the accurate 
communication of large volumes of detail among all team members. 
Experience has shown that it is essential that this detail be written 
down; the opportunities for misunderstanding in oral communication 
are just too great. English (or any other natural language) often fails for 
this communication due to too much ambiguity or too little expressive 
power. For this reason one often finds a host of special formalisms in 
use for internal communication of design choices: data flow diagrams 
(Yourdan & Constantine, 1979), d&ision tables, HIPO Charts; social 
practice descriptions (Putman & Jeffrey, 1985); various kinds of tables, 
structured English, etc. Each of these formalisms can be viewed as a 
special case of one of the descriptive formats proposed by Ossorio 
(Ossorio, 1971/1978), so that Descriptive Psychology provides a kind of 
metalanguage into which we can fit each of these special communication 
tools. Doing this placement gives us a valuable perspective from which 
to create new communicational tools or enhance the old ones. 

Ultimately, the entire behavior of the system must be specified in 
some machine-readable form. This specification may use any of the 
above-mentioned languages, actual compilable code, sets of rules for an 
expert system shell, private little languages, or what have you. But, as of 
this writing, whatever is going to be in the behavioral repertoire of the 
software, we have to put there explicitly by means of these descriptions. 
And, given the difficulty of getting these descriptions right, they must all 



SoftwtJre Engineering 111 

be subjected to several levels of checking, usually by some combination 
of independent review of the descriptions themselves with testing of the 
resulting software in action. The sheer mass of this descriptive task 
constitutes the most serious obstacle to successful completion of most 
software projects. 
6. Introduce the Products into the Target Community. Some years ago 
an advertisement appeared in one of the computer trade journals 
showing several crates sitting forlornly on an otherwise empty loading 
dock. The caption read: nsome computer systems aren't delivered. they're 
abandonedn. Today, vendors of both hardware and software are sensitive 
to the problems of getting a new system into effective use, but these 
problems remain thorny. To stretch an analogy used above, it is like 
bringing a new person on board, but the new person is infinitely more 
helpless that any human being to push for getting himself wisely used. 
Further elaboration of this challenging task will have to wait until I 
garner more experience with it myself. 

ECONOMIC CONSTRAINTS 
All six of the above accomplishments cost money to do. The last three 
of them (capture needed knowledge and competence, embody them in 
working products, and introduce the products into the target community) 
are legitimately chargeable to software development contracts. The first 
three (locate high opportunity target communities, conceive products 
appropriate to these communities, and create business relationships with 
them) must come out of the software vendor's profits. The chargeable 
accomplishments are usually done against a budget, either an internal 
one or an external fixed-price contract. Thus it is crucial to be able 
accurately to estimate their cost up front. It is more important to have 
a reliable upper bound on the project cost than to be able to predict the 
actual cost. This is because there are so many things that software might 
do, which look attractive on the surface, and which should not be done 
because the development costs outweigh the benefits. A software vendor 
unable to filter these situations out is doomed immediately. (In 
situations involving advanced development, estimation of costs within a 
50% tolerance is frequently impossible. Clients and contractors have 
come up with many imaginative project-staging and risk-sharing 
arrangements for dealing with such situations.) 

Capturing the needed knowledge and competence presents at least two 
economic problems: On the client side it is intangible (how much does 
it cost to have this key person pestered by knowledge engineers?), and 
on the vendor side it is expensive. It is expensive because system 
implementation eventually requires machine-readable descriptions of 



112 H. PAUL ZEIGER 

system behavior, and somebody has to span the cultural gap between the 
target community and some community in which machine-readable 
descriptions are a core element. It doesn't matter too much whether we 
call this somebody a systems analyst, a knowledge engineer, or a 
programmer; and it doesn't matter too much what language the 
machine-readable descriptions are in (any of the ones mentioned so far 
are among the possibilities). The crucial parameter is the width of the 
cui tural gap. (Different communities implies different mem hers, statuses, 
concepts, practices, locutions, or world; sec Putman, 1981). The main 
things that need to be carried between communities for system 
description are concepts, practices, and locutions. We understand fairly 
well how to train people to translate practices and locutions (although 
this is far from a trivial skill to acquire); translating concepts is far less 
well-understood and therefore rarer. In most situations today, the width 
of the cultural gap is large enough that those who can successfully work 
across it are rare and expensive. Furthermore the task itself is very 
exacting, so that the systems analyst, knowledge engineer, or programmer 
not only has to he competent at spanning the large cultural gap, but also 
at managing large masses of detail, constantly checking correctness, and 
frequently correcting large, messy descriptions withOut wrecking 
them-not to mention dealing patiently and creatively with all kinds of 
feedback from both communities: The clients hate this feature; the 
machine won't execute that one. 

The problem of spanning this cultural gap provides the field for a host 
of currently attempted technological advances: 

Formal Design Languages 

Formal design languages constitute a compromise between English and 
machine-readable code (see Yourdon and Constantine, 1979, for several 
of the examples mentioned above). The creators of these languages 
attempt to remove the ambiguity of English by restricting the vocabulary 
and by providing formal procedures for defining new terms. They 
attempt to enhance the expressive power by adding new syntactic 
constructions, graphical or textual, to facilitate the construction oflarge, 
articulated, descriptions. Thus they allow us to bridge part way towards 
the terrible discipline of the fully unambiguous, implementable, 
description without taking the whole jump at once. 

Rapid Prototyping Tools 

Rapid prototyping tools are software construction aids that assist us 
in building preliminary systems having limited functionality, fast. They 
often force us to bridge further toward the machine than does a formal 
design language, but pay off with something that actually runs, albeit 



Software Engineering 113 

below the standards of the envisaged product. Such a prototype is often 
a necessary intermediate step, not merely for technical reasons, but in 
order to provide clients with something they can see, feel, and most 
importantly compare with their visions of how the product will behave. 
Just as a musician may be able to look at a score and bear the music it 
represents, an analyst may be able to look at a design language 
description and feel the behavior of the product described. Few clients 
are blessed with this gift; therefore the prototype is an important early 
step in generating design feedback. 

Expert System Shells 

Expert system shells offer quick construction of systems for which the 
principal concepts needed by the system ilself are if-then-else rules. They 
promise us finished products after spanning a cultural gap that is an 
order of magnitude smaller than we are used to, if only the desired 
application is amenable to description in the rule-oriented language 
provided. As with other descriptive languages, there is a trade-off 
between breadth of application and ease of use: narrow-scope tools like 
M-1 and ExpertEase are easy to learn and use; broad-scope tools like 
S~l and Kec call for specialized competence comparable to that of a 
programmer. 

For the professional software builder, it is easy to become jaded about 
the continual procession of new software tools, each promising to make 
software productivity equal at last to the current challenges. There is an 
economic equilibrium: Software productivity has improved a lot in the 
last decade, and every advance is immediately absorbed by the new class 
of applications that has just become feasible using the new tools. The 
advance is never as great as its inventors hoped; still, there is always a 
new class of applications just around the corner that would become 
feasible if only we could make some part of the system building task 
(usually the knowledge capture) another order of magnitude cheaper. 

Embodying knowledge and competence in working products also 
presents economic problems. Since complete, consistent, detailed 
descriptions arc so expensive, the key challenge here is to throw away as 
little as possible along the way. That is, build technological capital in the 
form of re-usable descriptions that allow us eaoily to carry the bulk of 
past problem solutions into the future without having to re-solve those 
problelllS. (There will always be plenty of new ones!) The main tool here 
(in addition to all those already mentioned) is a library of descriptions, 
preferably machine-readable, some purchased, some locally built, that 
constitute the technological capital of the firm. 



114 H. PAUL ZEIGER 

HUMAN SYSTEMS CONSTRAINTS 
When there are tasks that are done expensively and poorly, it is usually 
because the work is on the ragged edge of the abilities of persuns to do 
it. Several of these situations in the creation of software have been 
suggested by the economic issues mentioned above. For example, 
bridging disparate cultures is difficult for many; so is managing large 
amounts of detail in an environment in which small slips make big 
messes. It is useful to enumerate the powers, and dispositions (Ossorio 
1970/1981) needed for various system building tasks, along with 
significant behavioral limitations that will prevent persons from 
accomplishing these tasks. For example, we have so far mentioned the 
following abilities as needed at some point in the task: to capture the 
concepts, practices, and locutions of an alien community, to 
communicate them effectively to other team members, to effectively 
manage large masses of detail, and to cope with computing machinery. 
To complete this enumeration is beyond the scope of this article, but 
should be done as preparation for an analysis of how the entire task of 
software construction can be better partitioned among the various 
players. At present the jobs tend to fall into two classes: jobs calling for 
a combination of abilities that is absurdly rare (systems analyst, 
knowledge engineer), and jobs described by Fred Brooks's (1975) dictum: 
w Anyone smart enough to do . . . right is too smart to do it for longft 
(project librarian, software test specialist). We need to critique our 
classification of jobs and responsibilities with an eye toward getting the 
required competences lined up with what we can reasonably expect to 
find in one person. 

There is a related class of relevant human systems constraints having 
to do with communication. Persons whose attention is focussed on 
creating or maintaining large, complex descriptions tend to forget to 
communicate to others those actions that impact the others' use of those 
large complex descriptions. As such a person, I can testify that it is 
tempting to dive into such a description and regard it as my whole 
world. Coming up for air and emerging into the broader reality is an 
uncomfortable task often put off as long as possible. 

METHODOLOGY 

Overview 

When a product has been completed, it includes many descriptions of 
the behavior of the product. Some are brief and glossy, for marketing 



Software Engineering 115 

use, as you might receive unsolicited in the mail. Others are more 
detailed, for the persons who are going to use the product, like the 
user's manuals for WordStar or PCDOS. Still others go into the inner 
workings of the product, for those who will maintain it, for a typical 
microcomputer product, these are from 3 to 10 times the volume of the 
user's manual. Finally, there are the descriptions that are machine 
readable, for compilation or interpretation by the computer as it runs 
the product. For a typical microcomputer word processor or spread 
sheet, these descriptions total from 10,000 to 100,000 lines of code in 
some programming language. To gain enough familiarity to modify such 
a product might take an experienced programmer several weeks of study. 

Note that the sum total of all these descriptions is the product: There 
is nothing else to add. They should all be consistent with each other. 
Each should be complete, from the perspective of the community it is 
for. And, of course, the behavior described by each should be 
appropriate to the needs of the target community. Each represents the 
same product, redescribed from the point of view of a different 
community or status within a community. The language of each differs, 
subtly or spectacularly, from that of the others. 

Each of the above descriptions has to be created by members of the 
software vendor's staff, perhap~ with machine aid. In addition these staff 
members will typically produce many more descriptions, partial 
(including demos), incorrect, supporting (scaffolding), even subsidiary 
products for internal use. Some of these descriptions may be, like those 
mentioned above, consistent and complete descriptions of the whole 
product from the perspective of some special community or status within 
the vendor's development shop. Work planning for product development 
consists of deciding which descriptions are to be produced when, by 
whom, and bow they will depend on descriptions produced earlier. A key 
planning question is how we apportion the work to take advantage of 
the different strengths and weaknesses of the team members-especially 
the most oddball team member, the computer. 

Most of the descriptions are notoriously error-prone. Much of the 
development time is devoted to checking their correctness by whatever 
means work. More key planning questions relate to this testing: How is 
each description to be tested? Which can be used to test each other? 

The rest of this paper is prescriptive. It consists of suggestions and 
rules of thumb gleaned from several years of experience. Although they 
are all part of the folk wisdom of software engineering, the perspective 
of Descriptive Psychology bas thrown a fresh light on eacb of them. 
1. About the Descriptions Generated. Every description has to be 
readable to somebody; the fewer that are only readable to arcane 
specialists, the better. 



116 H. PAUL ZEIGER 

Compiling or interpreting descriptions is desirable. For example, 
programs that have to format text on a page often interpret a little 
language for describing the formatting: Center this line, change the right 
margin, etc. A program that needs to know the address of the Secretary 
of State of each of the 50 states would normally keep this information 
in a table. In each case we have a small descriptive language with 
narrowly prescribed formats that is read and written by both persons and 
programs. 

Special viewing tools short of full compilation or interpretation may 
be needed. The best examples of these are for dealing with the complex 
descriptions we call computer program source listings: cross reference 
generators and formatters that capitalize and indent automatically 
according to the structure of the text. 

AJI of these descriptions may be considered cases of some Descriptive 
Psychology format: The page formatting language turns the text to be 
printed into a kind of process description. The table is a state of affairs 
description consisting of a number of element-individual pairs. The 
programming language source listing is process description with object, 
process, and state of affairs constituents. It is useful to take this 
perspective when confronted with a particularly opaque description; 
sometimes it can be thereby be reorganized into something better. 

For descriptions that are to be written in an actual programming 
language, use the highest level programming language for which you 
have an adequate implementation. When applied to programming 
languages, "higher lever means "permitting a narrower cultural gap 
between the program text and a description in the language of the target 
community". (Another way of saying this is that the basic concepts of the 
programming language are closer to the relevant concepts of the target 
community.) Consequently, the higher the level, the greater the 
economics across the board in construction, checking, and maintenance. 
2. Make up Languages Appropriate to the Task. Descriptive Psychology 
provides a rich stock of descriptive formats (units for objects, processes, 
events, and states of affairs; task and means-end descriptions, etc.). 
There is an infinite range of possibilities for how these formats, or 
variations on them, might be used in a given practical descriptive task. 
The job calls for experience, imagination, and wisdom. Descriptive 
Psychology is a more a metalanguage than a language; it provides 
boundary conditions on what forms of expression make sense, and some 
hints as to what might work well in certain situations, but the detailed 
representation of each real world situation (including the form of the 
representation) is up to the person who needs to describe that situation 
for computer usc. This is most obvious (and most difficult) at the point 



Software Engineering 117 

where the bottom levels of human-oriented description meet the top 
levels of machine-oriented description. 
3. Anchor at the Top. Descriptions of large, complicated systems are 
made comprehensible (sometimes) by the copious use of part-whole 
descriptions. Unless some very strong reason calls for an exception, 
always describe the whole before its parts. Such a description provides the 
context for each part described, enhances readability, and reduces the 
likelihood of inconsistency. Note that each part described may be an 
object, process, event or state of affairs (not to menlion the derivative 
computer science concepts: procedure, data strm:ture, message, agent, 
module, etc.). · 

Once you have become Familiar with the purpose of a computer system 
that is under design, it is very easy to neglect to write down the topmost 
levels of its description. This tendency must be avoided, both for the 
sake of future maintainers of the system and for the sake of your own 
future elaboration of the details: The top levels of the design contain 
boundary conditions on what will work at the lower levels that are 
amazingly easy to forget. 

The top levels are best written in a language very different from most 
programming languages. A good starting point is a community 
description: What members (software-implemented agents) will there be? 
what statuses? what practices? what concepts are needed to carry out 
these practices? what messages sent and received? what is the logical 
form of these messages? A good exercise for systems analysts is to 
critique data flow diagrams (Yourdon & Constantine, 1979) from this 
point of view. What do they cover? What do they omit? 
4. Keep Everything Visible (to anyone who cares). The product is 
composed entirely of descriptions. Each description is written in the 
language of some community. Some of these communities are closely 
tied to the computer and some are not. Complexity is everywhere. The 
most important guideline I can think or is this: describe each complexity 
in the language of the community it belongs to. Lawyers have honed their 
language to deal with legal complexities, managers with business 
complexities, and accountants with financial complexities. These 
complexities are difficult enough to write down in a language that was 
designed for them. Writing them down in computerist's language is 
certain disaster: then for anyone to critique or maintain them, he has to 
be fluent in the concepts of both communities. The guideline above 
maximizes the visibility of the product's design; everyone who has an 
interest in a certain aspect of the system has at least a chance of reading 
the descriptions that pertain to that aspect of the system. 

Of course, we must eventually have machine-readable descriptions, so 
if the descriptions discussed above need to be translated by hand into 



118 H. PAUL ZEIGER 

machine-readable form, we have accomplished little. The answer is to 
machine-translate these descriptions into something that is more 
harmonious with the computer. Put another way, we make these 
descriptions readable not only to some target community of persons, but 
to one or more computer programs designed specifically to handle this 
class of descriptions. 
5. Minimize Redundancy. Redundancy in descriptions of a software 
product is a major liability. It bloats the descriptions, inhibits their 
readability (and implementability) and, worst of all, opens the door for 
inconsistencies between the various redundant parts. On the other band, 
the removal of redundancy is absolutely secondary to the objectives of 
the preceding paragraph; readability to the concerned communities 
comes first. This means that whenever two descriptions of the ~same 
thing" are needed for two different communities, we need to either pick 
one and derive the other from it (preferably by machine), or create a 
third and derive both of them from it. The simplest example is a table 
of numbers: It needs to be in text form to be created, critiqued, and 
revised by persons, yet eventually gets represented using tbe internal 
representation of numbers in the computer. Often we find ourselves 
building separate programs to do this translation; they are compilers for 
data. 
6. Build a Dictionary of Concepts. The total of all the concepts used 
in all the descriptions that constitute a product make up a language and 
world private to the product (and the development team). For example, 
the documentation for a word processor often contains specialized terms 
like "cursorH, ~text buffer", "insert mode", and "edit session". If we 
continued the search for specialized terms throughout all the 
descriptions making up the word processor right down to code, we would 
typically come up with 500 to 1500 words and phrases. As obnoxious as 
such a jargon is, it is inevitable, and the best we can do is to compile a 
dictionary for it. That way we at least reduce the chances that two team 
members (or one at different times) are using slightly (or wildly) 
different versions of what they thought was the same concept. In the 
jargon of the systems analyst, tbe wdata dictionary" is an approximation 
to this dictionary. To design effective formats ror such a dictionary that 
allow it to be more comprehensive than current data dictionaries is a 
major potential application of Descriptive Psychology to software 
engineering. 
7. Isolate the Tough Descriptive Nuts; Start on Them Early. Early in 
the descriptive task for a product, there often surface situations that 
cause butterflies in the stomach of the experienced analyst. Some 
description may appear to require a billion characters of text to write 
down, or some object may require conceptual elaboration in two entirely 



Software Engin£ering 119 

different directions for two of the communities involved, or some needed 
part of a description may appear to be subject to combinatorial 
explosion. These tough descriptive nuts may constitute real show 
stoppers, or merely points where unusual skill will be needed to come 
up with the right kind of description. In either case, lavish attention 
early from the most experienced brains on the project is called for. The 
worst lhing that can happen is to pick an inadequate descriptive 
methodology for one of the nuts and try to bull your way through, only 
to have the project bog down because of it 10,000 lines of code later. 
8. Test Concurrently with Every Step of Development. As more and 
more descriptions are constructed and hooked together, more and more 
of the behavior of the desired product becomes manifest. For every 
deviation of this behavior from that desired, we must find the bug and 
repair it. To do so appears to take an amount of effort that increases 
faster than linearly in the size of the portion of the product so far 
constructed. To avoid major wastage of time (testing typically consumes 
at least as much time as building), we must organize incremental testing 
along with incremental building so that the troubleshooting time does 
not explode as the product nears completion. I find this a most 
challenging facet of the art of software engineering. 

The preceding paragraph was concerned with the effort necessary to 
find bugs. There is an analogous situation with respect to the effort 
necessary to fix them. Each bug fix can be visualized as backtracking in 
the construction process to the point where an error was made, then 
rebuilding forward without making the error. The 
cost increases with the distance you have to backtrack: Early·stage 
design errors that surface late in the construction process are 
particularly costly. With long experience, project managers develop an 
instinct for how to organize the work to hold down the length of the 
likely backtracks. It would be nice to bave some kind of theory of this 
phenomenon. 
9. Use Persons Far From Your Own Community as Testers. A good 
aeronautical engineer can almost feel the stresses in a plane in which he 
or she is flying. The same is true for software engineers, and they seem 
to have an instinctive disinclination to break that which they have built. 
Therefore we need persons with a different mental set to serve as 
testers. 
10. Make a Visual Mockup First. Each software product has its own 
distinct feel. Some feel like flexible and powerful machine tools in the 
hands of an expert, like a radial arm saw used by a cabinet maker (the 
Unix shell is a possible example). Others have tbe comfortable feel of 
a familiar household appliance, always responding appropriately to a few 
simple commands (tbe PFS series of products was designed to be this 



120 H . PAUL ZEIGER 

way). Still others give the illusion of a rather limited person who is 
holding a conversation with you (e.g., the inFamous Eliza, or the dialog 
boxes used by many Macintosh programs). It is essential that this feel be 
harmonious with the desired role of the product in the target 
community, and this must be assured up front, for the feel influences 
everything about the internal design. It is becoming fashionable among 
software developers to check this out via one or more mockups that 
simulate the product's behavior in a very restricted range of scenarios 
(Dan Bricklin's Demo Program is often used for this). 
11. Implement the More Visible Parts Before the Less Visible. Although 
description proceeds most naturally top down, from the whole to the 
parts, the parts can be implemented in many possible orders. The order 
of implementation should at least do justice to the extreme 
error-proneness of the descriptive task: Of all the parts you might 
implement at a given point in time, implement first the one that is the 
most visible; that way you get the most opportunity for testing and 
inevitable revision. The preceding paragraph is an example: The 
product's feel is its most visible part. If two parts are equally visible, 
implement first the one that is more error-prone. If, on the other hand, 
you implement something invisible, is faults will remain hidden, lulling 
you into a f,ilse sense of how much has been finished. This advice 
dovetails with the discussion above about testing concurrently with every 
step of development. 
12. Don't be Afraid to Use a Rich Array of Descriptive Methods and a 
Correspondingly Rich Array of Software Tools for Dealing with Them. 
Fifteen years ago, almost all the descriptions making up a 
business-oriented software product were of two forms: tables and Cobol 
code. Today it is more common to have many forms: tables, knowledge 
bases, interpreted descriptions of processes, relalional models, social 
practice descriptions, and even different programming languages for 
different parts of the product. Each of these descriptive forms might 
have assoL-iated with it a compiler, an interpreter, an editor, a critic, or 
a formatter. We must be careful not to be overwhelmed by the task of 
building these tools, yet it is often economical to build them because 
they can be used across a range of similar products. 
13. Cast the Most Volatile Parts in the Most Pliable Medium. Tables arc 
"soft" (easily changed); code is "hard"; tbe other descriptive forms fall 
somewhere between. Some descriptions get revised with every bug ftx or 
product enhancement while others remain stable for years. Obviously, we 
want to make the medium Fit the function: soft media for volatile 
functions; hard media for nonvolatile functions. This apparently simple 
objective is astoundingly hard to achieve in practice. 



Software Engimering 121 

EPILOGUE 
I have tried here to follow my own advice and give an exposition 
anchored at the top and elaborated down to a useful level of detail. I 
wish that it contained more concrete, useful, rules. I am happy, though, 
with the number of guidelines and rules of thumb included, and 
particularly pleased with the perspectives on software engineering that 
I have demonstrated by using them. I hope that some of the questions 
raised here may provide others with fruitful research topics. 

ACKNOWLEDGMENTS 
I wish to thank those who have participated with me in discussions, sometimes 
heated, about the subjects in this paper, especially P. G. O&Sorio and Lowell 
Schneider. I also thank those who have belped to generate the concrete 
experience, sometimes harsh, that motivated those discussions, especially Terry 
Schmid, Cecelia Jacobs, and Stephanie Allen. And I especially than1c those who 
have participated in both the above statuses: Joe Jeffrey and Anthony 0. Putman. 

Author's address: 710 Hawthorn Ave., Boulder, CO, 80304 

REFERENCES 
Brooks, F. H., Jr. (1975). The mythical man-month. Reading, MA: AdcJison-Wes!ey. 
Ossorio, P. G. (1971/1978). "What actually happe11S". Columbia, SC: University of South 

Carolina Press. (Originally publi5hed in an earlier venion in 1971 as LRI Report No. 
10a. Whittier, CA and Boulder; Linguistic Research Institute. Later listed as LRI 
Report No. 20.) 

Ossorio, P. G. (1969/1981). Notes on behavior description. InK. E. Davis (Ed.),Advunces 
ill Desr.:riptive Psycholoi:J (Vol. 1, pp. 13-36). Greenwich, CT: JAI Press, 1981. 
(Originally published in 1969 as LRI Reporl No. 4b. l.Ds Angeles and Boulder: 
linguistic Research Irutitutc.) 

Ossorio, P. G. (1970/1981). Outline of De~criptive Psychology for pei:'Sonalir:y theory and 
clinical applications. InK. E. Davis (ed.), Advances in Descriptive Psychology (Vol. I, 
pp. 57-81). Greenwich, CT: JAI Press, 1981. (Originally published in 1970 as LRI 
Report No. 4d. Whittier, CA and Boulder: Linguistic Research Institute.) 

Ossorio, P. G. (1979/1981). Conceptual-notational devices. InK. W. Davis (Ed.),Advances 
in Descriptive Psychology (Vol. 1, pp. 81-104). Greenwich, Cf: JAI Pre.u, 1981. 
(Originally published in 1979 as LRI Report No. 22. Boulder: Linguistic Research 
Institute.) 

Putman, A 0. (1981). Comwunlties. In K. E. Davis (Ed.), Advances in Descriptive 
Psychology (Vol. 1, pp. 195-209). Greenwich, CT: JAI Press. 

Putman, A 0., & Jeffrey, H. J. (1975). A new paradigm for software and its dc:velopment. 
InK. E. Davis & T. 0. Mitchell (Edt!.), Advances in Descriptive Psychology (Vol. 4 pp. 
119-138). Greenwich, Cl~ JAI Press. 

Yourdan, E. & Constantine, L. L. (1979). Srructured lksi171. Englewood CiiUs, NJ: 
J:>rentice-Hall. 




