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ABSTRACT

A new paradigm for artificial intelligence is presented that involves treating
the computer as a behaving person. Descriptive Psychology provides the
formulation of Persons, Behavior, and the Real World in a systematic,
interrelated way that makes possible such an approach to the field of
artificial intelligence. In the reformulation of the general problem of artificial
intelligence, the mechanistic model is replaced by one in which the com-
putational process becomes an instance of the Performance parameter of
Intentional Action. The central task of getting the computer to recognize
instances of concepts that cannot be reduced to computations is accom-
plished by a judgment space technology invented by Ossorio. The technol-
ogy is described, and its use in research on automated information retrieval
and several other topics in artificial intelligence is illustrated.
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T. S. Kuhn, in The Structure of Scientific Revolutions (1970}, applied the
concepts of paradigm and paradigm shift to revolution in scientific fields.
A field’s paradigm is basically the world view that defines the field. It
includes the set of standards accepted by members of the community
about the world, what place their endeavor has in that world, what
constitutes legitimate techniques and answers to questions, and perhaps
most importantly, what constitutes a legitimate question. Sharing the
paradign is the sine qua non for being a member of the scientific commun-
ity whose paradigm it is.

The concept of phlogiston, for example, has literally no place in the
practices of the modern chemistry community. Similarly, modern astron-
omers do not concern themselves with questions involving epicycles in
the courses of the planets.

The paradigm for artificial intelligence (Al) has been that both a human
and a computer are information processing devices: A person receives
“*sense impressions’’ from ‘‘the world’’; these sense impressions are
interpreted to produce what we ‘‘see,”” ‘‘think,”’ etc., and sometimes
further processing results in an output from ‘‘the system,”” which may or
may not alter the environment. The information processing is of course
extremely complex, but is basically describable in terms of powerful
heuristics for handling such processes as tree-searching. The paradigm is
well stated by Newell and Simon (1972), Minsky (1968), Uhr (1973), and
(in rather a different context) Ossorio (1971/1978).

PARADIGM FAILURE

A paradigm can fail. Paradigm failure means that the members of the
community involved are unable in some significant ways to treat the
world as being what the paradigm says it is. When a field’s paradigm has
failed, the field is (by definition) in a state of crisis. The resolution of the
crisis is the shift to a new paradigm. The rise of quantum mechanics early
in this century is an excellent example. A new paradigm must be adopted,
or the field ceases to be a scientific endeavor, for the existence of a
paradigm is a key difference between science and other human activities.

In artificial intelligence (AI), the mechanism paradigm has been the
only one that Al researchers have been able to see as providing any basis
for scientific work. While non-mechanistic descriptions have at times
been proposed, they have not been seen by the scientific community as
scientific accounts of human behavior (Dreyfus, 1972). On a wider scale,
the mechanism paradigm is the view held by almost all of the scientific
community in the Western world (Dreyfus, 1972; Ossorio, 1971).

In recent years there has been considerable debate over the legitimacy
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of Al as a field of scientific endeavor. The field has been attacked as
having had no significant successes, and being based on a fundamentally
deficient view of human nature (Dreyfus, 1972). Of course, practitioners
in the field have responded vehemently to these attacks.

This paper presents the view that the debate over Al may appropriately
and fruitfully be treated as a dispute over the viability of the mechanism
paradigm as a basis for Al. From this perspective, the attacks on Al may
be seen as claims that the paradigm for AI has failed. Since critics have
offered no alternative paradigm that Al researchers have been able to see
as a viable foundation for their work, it is not surprising that the attacks
have failed: The Al community continues to do research, publish papers,
hold conferences, attract Ph.D. students, obtain funding, etc., with no
significant change in the way it conducts itself.

As Ossorio (1971/1978a, 1971/1978b) has discussed extensively, the
mechanistic paradigm functions adequately in the ‘*hard’’ sciences, but
has some serious conceptual inadequacies as a basis for a science of
human behavior. Al is directly concerned with the world of persons and
human behavior. Thus, seen from this perspective, Al's paucity of signifi-
cant results is not surprising, and, more importantly, does not appear to
be simply a matter of practical difficulties that can be expected to be
solved. The point of this paper is to present a new paradigm for Al, which
makes possible a science of Al without having to try to treat humans as
mechanisms.

THE BEHAVIORAL PARADIGM

Redescription, Not Reduction

It is possible to argue that the mechanistic paradigm is necessary to
have a science of artificial intelligence at all. That argument, in very brief
form, is roughly as follows: A computer is a mechanism. Therefore, if we
have a computer which behaves as a human (though perhaps one with
certain physical handicaps), then we would seem to have reduced human
behavior to machine processes, for any behavior would have its equiva-
lent machine process. The only alternative would seem to be some form
of ‘‘ghost outside the machine.”” If one sees people as machines (as the
mechanism paradigm holds) this argument seems compelling.

The key to resolving this apparent dilemma is not to start out attempt-
ing to treat persons as nothing but mechanisms. Let us take a common
place (in the human world) event, and examine the logic of describing that
event. Consider a person making the opening kickoff of a football game. A
full description of that behavior includes a specification of all of the eight
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parameters of Intentional Action. One of those parameters is the Per-
formance parameter. An observer may redescribe the Performance in a
number of ways. Some of those descriptions may include physiological
processes, objects, events, and states of affairs, In particular, the ob-
server could include processes, objects, events, and states of affairs in the
person’s brain (neurons firing, signals crossing synapses, serotonin levels,
etc.) The observer could, in principle, give a description of what is
happening, physiologically, when any part of the bhehavioral process of
making the opening kickoff is taking place.

This certainly does not imply that an opening kickoff reduces to a set of
physiological processes; it means only that when a person engages in this
action certain other states of affairs are also the case. In particular, it does
not mean that the physiology is what is ‘“‘really’’ happening. (This is
discussed extensively in Ossorio [1971/1978b].) In other words, this is an
example of the (Jogical) fact that physjological processes that occur when
a Person engages in some Intentional Action are exactly that: processes
that take place when a Person behaves.

Now-let us consider a different example: a program to do medical
diagnosis, such as the thyroid-diagnosis program described in Johannes
(1977). A list of a patient’s characteristics are the input to the program,
and a diagnosis is the output. The program’s diagnoses have been judged,
by a panel of qualified physicians, to be competent diagnoses. Thus, the
program may appropriately be said to map sets of characteristics in
relation to diagnoses. However, notice that the program may also be
described as (a) a sequence of changes in the numerical values of vari-
ables in the program; or (b) a sequence of changes in the physical state of
various of the components of the machine on which the program is
running. None of these descriptions is incorrect. Neither do any of these
descriptions disagree with any of the others.

Notice that there is no feature of the physical states of the machine
which makes these states represent numbers and instructions, and there is
no feature of the values of the variables which makes them represent
characteristics and diagnoses. The descriptions given are different pa-
rameters of the Intentional Action which we can successfully treat the
machine as engaging in. In other words, the programmer has designed a
process such that we may successfully treat the results of the numerical
process as a case of medical diagnosis. The same principle exemplified in
the kickoff example may be seen here: There is no implication that diagno-
sis reduces to, or “‘is really”’ numerical calculation. Examples of this
principle are common in everyday applications. Consider a program cal-
culating checking account balances for bank customers. There is nothing
about the calculations to imply that the program is ‘‘really” doing this.
Rather, the programmer has written the program so that the numerical
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process may successfully be treated as a case of computing the balance.
That it is the balance (or is not) is a fact (state of affairs) in the human
world, not a fact about numbers in the program.

Treating a Computer as a Person

Let’s look now at a third example: Stipulate a computer that passes
“Turing’s Test’’—i.e., a person who did not know in advance would not
be able to distinguish between the program and a human being (Jackson,
1974). This means that we may successfully treat the computer as engag-
ing in those Social Practices that we expect a paradigm case Person to
engage in (language, problem solving, negotiation, etc.), although again
perhaps with some physical handicaps.

While engaging in these Practices, a variety of physical, electronic, and
numerical processes and states of affairs will occur. A number of those
might take place within what we could appropriately call the *‘brain.”
Thus, while the machine talked, laughed, argued, passed the time with
friends, wrote letters to the editor, etc., some number of ‘‘brain’’ pro-
cesses would be taking place. And just as with medical diagnosis and
checking account balancing, having these processes go on while the com-
puter is engaging in these Practices does not mean that any of the social
practices have been reduced to electronics, physics, or numerical cal-
culations. When ordinary persons engage in various social practices, a
variety of physiological things may happen (recall the kickoff); when this
stipulated computer engages in various social practices, different *“‘phys-
iological’’ things happen. What counts for us about a Person is the Social
Practices he engages in, not the concomitant physiology.

Ossorio has amply demonstrated that the fact that humans have brains
which are physiological mechanisms in no way implies that humans are
mechanisms, or that behavior is physiology (Ossorio, 1971/1978b). The
point of this example is that the same relation holds for computers: Having
a person with a computer for a brain does not imply that that person’s
behavior is physiology, or that that person is a mechanism. A human with
a computer for a brain is exactly that: a human, with an unusual brain.
Just as there is no logical problem in having humans with protoplasmic
brains, there is none in having humans with electronic brains, and there is
no ‘‘ghost outside the machine’’ in either case.

The apparent dilemma of Al has been resolved, by moving from the
machine concept to the Person concept, and examining the Intentional
Action formulation of the Behavior of a Person. What we have been doing
here can be seen as a case of treating the computer as a behaving person.
The concept is the new paradigm for Al: Treat the computer as person
behaving in the world.
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Research within this paradigm—i.e., acting on this concept—is en-
deavoring to create programs that we may successfully treat as Persons
behaving in the world; the ultimate standard is the degree to which a given
program may be so treated. There is no question of trying to reduce
persons to mechanisms or behavior to computation; there are many
questions involving how to build programs whose behavior we may
appropriately describe as the behavior of a person. The issue of how to
build such programs, and in particular the question of how to get the
computer to do things that do not reduce to computations, is the subject of
the next section.

A TECHNIQUE FOR JUDGMENTS

If treating the computer as a behaving person is to be successful as a
paradigm for Al, we must answer the question posed at the end of the last
section. If we cannot, then the whole enterprise is legitimately subject to
the criticism that, while it may make sense to describe the machine as
acting on concepts, if the only behaviors actually available to the machine
are equivalent (to us) to computations, then there is little point in talking
that way.

A concept will not, in general, reduce to some other concept. Instances
of a concept may have nothing in common, other than being instances of
the concept. How then will we program the computer (which after all can
only calculate) to do things that we can appropriately describe as acting
on concepts, and not just manipulating numbers?

Ossorio developed a technology that we can use to meet this need. In
the original study (Ossorio, 1965) he dealt with the problem of having the
computer make judgments of subject-matter relevance. The technique
was called a Classification Space. In later work he presented Category
Space for judging the category a thing fits into, Property Space for judging
properties, Functor Space for judging significant dimensions of variation,
and Means-End Space for judging how well a given means is suitable for
achieving a given end (Ossorio, 1965, 1966, 1971a/1978).

The original publications (Ossorio, 1965, 1966) present the technique in
detail. Rather than repeat that detail, my presentation is designed to
provide a preliminary grasp of the procedure and to give those with
relevant problems some reasons for trying to use the technology. Perhaps
the most important reason for using the new procedures is that they are
consistent with and were in fact derived from the behavioral paradigm of
Descriptive Psychology. For didactic reasons, the first illustration will be
based on judgments of subject matter relevance, but, as we shall see, such
a starting place in no way limits the implications of the presentation for
the general problem of Al
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In order to simulate human judgment, one must develop a Judgment
Space. The first step in such a procedure is to notice that, while in general
real-world knowledge is not deductively or mathematically related, hu-
man users are able to act on such knowledge. Further, this knowledge,
whether factual and certain or fuzzy, vague, and tentative can be repre-
sented using numbers. We have a commonly used set of locutions to
indicate clarity, degree of applicability of a concept, etc. We introduce an
alternate set of locutions by using a numerical scale (e.g., 0~10), and use
the highest rating to represent certainty, lowest to represent uncertainty,
and intermediate values for intermediate uncertainty. For example, 1 out
of 10 represents a case where some description is not totally false, but is
extremely far-fetched.

Having represented enough knowledge in some area this way, it is in
general possible to make new judgments by combining the values repre-
senting the original knowledge. Let us go through the derivation of a
Judgment Space (or J-space) for making subject matter relevance judg-
ments.

Step 1. Select the fields of interest. (If this were an attribute-judgment
space, one would select the attributes of interest; if this were a concept-
recognition space, one would select the concepts of interest.)

Step 2. Select a set of words or phrases from the subject matter fields of
interest. (In the case of concepts, select examplars of each concept.)

Step 3. Putting the fields F[I], . . . F[n] across the top, and the vocab-
ulary v[l], . . ., v[n] down the side, we have a (empty) matrix. This is the
judgment matrix. Fill it, with judgments of the degree to which each v[i] is
relevant to each F[j]. These judgments are obtained from human judges
competent to make them. We ask the judges to express their judgments
numerically (i.e., using the numerical locutions), as follows:

—

. Irrelevant. This term really has nothing to do with this field. Rate 0.
2. Marginal. This term could be said to be relevant, but only in a
tangential or farfetched way. Rate 1 or 2.

3. Peripheral. The term has some relevance to the field, but is basically

peripheral to it. Rate 3 or 4.

Relevant. This term is definitely relevant to this activity. Rate 5 or 6.

. Highly significant. This term is highly relevant to the field; it is a key
concept in the field, or relates directly to several critical concepts.
Rate 7 or 8.

v
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Within each category, the rating is higher when the relevance is higher.

Step 4. We now have a filled-out judgment matrix. It is very difficult to
use this matrix as it stands, because at this point the numerical locutions
may not represent the human world well. Consider the following example.
Suppose we had three subject matter fields, Computer Software, Com-
puter Hardware, and Zen Buddhism, and three terms with ratings:

Cs CH Z
TI1] 8 0 0
T[2] 0 8 0
T[3] 0 0 8

Using only the numerical information here, T[1], T[2], and T[3] are
equidistant. But in the real (human) world, software is certainly more
closely related to hardware than either is to Zen. So, the numbers are not
representative of the real-world situation.

In actual cases of judgment matrices, we have a large sample of terms
from each field. Since some fields are more closely related, this means
that some columns of the matrix will be more closely correlated. What we
would like is to have another representation of the data, which represents
the information in the matrix in terms of independent ‘‘types of fields’’ or
“‘types of content.”” Since a high correlation between two columns repre-
sents high subject matter similarity (because of the sampling of the fields),
this means that we would like to have a representation of the judgment
matrix tn terms of groups of columns, such that different groups are
independent and the fields within a group are highly correlated. This is
precisely the result produced by intercorrelating and factor analyzing the
judgment matrix (Comrey, 1973).

Therefore, we get the desired orthogonal basis by intercorrelating and
factor analyzing the judgment matrix. The common factors, made up of
highly correlated F[i], and unique factors, which are those F[i] having no
significant content in common with any other field, are an orthogonal
basis for the Judgment Space. (The reader is referred to [Ossorio, 1966]
for a detailed description of the methods of factor extraction and rotation
used.)

Step 5. The factor analysis produces numbers, called loadings, which
relate the F[i] to the factors; the loading is the cosine of the angle between
the vector F[i] and the factor. The factor may be viewed as a combination
of those F[i] with a loading of over 0.7 (approximately the cosine of a
45-degree angle).
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This step is done as follows: Suppose we had factor loadings like

Factorl Factor I
F[1] 0.9 0.1
F[2] 0.8 0.6
F[3] 0.2 0.9
Fl[4] 0.1 0.9
F[5] 0.3 0.7

Supposing that term v[1] were rated 6 with respect to F[1] and 7 with
respect to F[2], and 0 with respect to all other fields, the rating on Factor I
would be 0.9*6 + 0.8%7 /(0.9 + 0.8) = 6.5. The rating on Factor II would
be 0, since F[1] and F[2] are not used to measure the value for Factor 11,
since their loadings are less than 0.7 and thus they are in a direction more
than 45 degrees away from Factor II. (Readers familiar with factor analy-
_sis will.recognize this_as computing the factor scores.)

Up to this point the mathematical procedures have been standard
factor-analytic ones (or close variants). We have used factor analysis to
produce a vector space with an orthogonal basis, each of whose basis
vectors represents a distinct type of content, and populated the space with
the vocabulary items. At this point we leave factor analysis and simply
use the vector space.

Step 6. The result of the above step is that the set of vocabulary terms
v[i] is located in the relevance space. (In the general case, the items, objects,
or whatever would be located in the Judgment Space.) The hallmark of
judgment, though, is to be able to judge novel cases. This is simulated by
using known objects (the terms, in the relevance space case) to simulate
judgment of new items: documents. When a document is to be located in
the Judgment Space, which is a case of judging its relevance, it is scanned
for terms recognized. Suppose we have K terms. The locations of the
recognized terms are a set of points in the Space, p[l], . . ., p[K]. To
judge the document’s relevance we need to calculate its location in the
Space. This is done by combining the K locations mathematically. In my
work, a log average has been quite successful. For example, in order to
calculate the value of the jth axis, one obtains the value, q[j], as given by:

qlil = logy (P! + . .. + bRl /K) )

(Recall that the axes are the common and unique factors of the judgment
matrix.) In other words, the value of axis j is the log average of the values
of each of the terms on that axis. This formula gives higher weight to more
highly relevant terms, which appears to fit the facts of human judgment.
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For example, a document in which ten terms were recognized but five
were judged to be as highly relevant as possible, say eight on zero through
eight rating scale, and the other five were judged to be entirely irrelevant,
say zero on the scale, would receive a higher relevance scale than the
simple average of the rating of these ten terms.

The function being componentwise (i.e., for the new value on axis j, we
use only other values on axis j) illustrates the correspondence between
the mathematics and the non-mathematical use of it: We have an ortho-
gonal basis for the space. Mathematically, this means that the values on
each axis are independent of values on the other axes. As noted above,
each axis represents an independent type of content. One would not judge
relevance to one type of content by examining relevance to entirely
independent, unrelated content.

Step 7. Documents (and terms) may now be compared for conceptual con-
tent similarity by calculating their distance in the Judgment Space. A variety
of metrics is of course possible; I have had good results using the standard
Euclidean metric (Jeffrey, 1975). By using a metric, the Space may be
used to retrieve documents by treating a retrieval request as a document,
locating it in the Space, and then retrieving those documents, in order of
closest document first. Since the axes of the space represent types of
content, and the value on each axis represents the degree to which a
document has that type of content, a document is mathematically close to
another (or to the request) precisely when it is close in conceptual con-
tent.

A cautionary reminder may be useful here. It is tempting, if one is still
operating in the mechanism paradigm, to view Judgment Space technol-
ogy as probabilistic reasoning, number-based inference, etc. To a certain
extent it can be seen that way, but doing so misses the point: A program
using a Judgment Space is doing something that we may successfully treat
as a case of making judgments.

The question raised at the beginning of this section was how we could
have the computer act on concepts that do not reduce to computational
processes. By gathering numbers which are instances of acting on concepts
(numerical locutions), and manipulating the numbers so that that rela-
tionship is maintained, we arrive at a mathematical object (the vector
space together with the combining function) such that we may appropri-
ately treat the results of calculating that function, in those cases, as
acting on the concept. The computer (viewed as a machine) still only
calculates; but when it calculates with these numbers, in this way, we can
view it as acting on concepts.
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RESEARCH IN THE BEHAVIORAL PARADIGM

This section discusses some examples of research in the field of Al as
defined by the Behavioral Paradigm. Some of the work presented has
been done, and some is proposed work. The examples cited are illustra-
tions of what appear to be interesting and fruitful ways of acting on the
concept of treating the computer as a behaving person.

Subject Matter Relevance

When a person retrieves information in response to a request, he makes
a relevance judgment of the request—i.e., the relative importance, within
various domains of human activity, of the information. This judgment is
one criterion which can be, and is, used in practice.

Ossorio (1966) constructed a Judgment Space with the ability to make
subject matter relvance judgments of documents and requests. He began
with 24 fields from science and engineering and 288 technical terms from
these fields. The factor analysis yielded 6 common factors. When the
space was used to index and retrieve documents, the correlations of
system ranking with human judge ranking ranges from .896 to .984 (Os-
sorio, 1966).

I implemented a complete document retrieval system based on this
approach (Jeffrey, 1975). A relevance space covering 62 fields and spe-
cialties within computer science was constructed, using 800 technical
terms. The system behaves just like a competent human librarian in a
computer science library. When responding to a request which is within
the range of content covered and that uses vocabulary for which judg-
ments are present, the system achieves an average recall of 75-85% of the
relevant documents simultaneously with an average precision of 80-90%.
These results are a very significant improvement over results obtained by
the usual techniques of word-matching, in which in almost every case the
recall percentage plus the precision precentage total 100%-—i.e., 30%
recall—70% precision, 80% recall-20% precision, etc.

It is interesting to see that the retrieval system has the same limitations
a human librarian does. If a user states his request in terms a librarian
does not know, the librarian will not understand it; the same holds for this
system. Subdivision of fields was not implemented. Thus, requests about
game playing programs would result in retrieval of documents on natural
language understanding, since both are topics within artificial intelligence.
Again, this is exactly what a human librarian who had no knowledge of
the subdivisions of Al would do—the only judgment available would be
relevance to artificial intelligence.
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Significant Feature Selection

It is an accepted fact, within the Al community today, that one ability
that humans have and machines currently do not is the ability to judge
what features of an object or situation should be examined. This is what
Dreyfus (1972) terms ‘‘zeroing-in.”

Lack of this ability leads to the necessity for searching a tree of
possibilities. In some cases this has produced some reasonable results;
the cases are those in which the possible states of affairs are simpie
enough, or have enough mathematical structure, that techniques such as
tree pruning and alpha-beta searching are not too poor a substitute for
judgment. (Jackson [1974] discusses tree searching techniques.) In check-
ers and, to a degree, chess, this has been so. In other cases, such as the
game of Go, the results have been dismal.

It appears that we could obtain some very interesting results in the area
of intelligent game-playing by using Judgment Spaces to provide a pro-
gram with the ability to (a) judge what features are significant about a
situation, and (b) judge the degree to which a situation has the features or
properties of interest.

These abilities would be provided by a Functor Space and a Property
Space, respectively. To construct a Property Space, the columns of the
matrix represent properties of interest, and the rows represent objects.
The judgments are the degree to which each object has each of the
properties. A new object (for example, a new board position in a chess
game) is located in the space by identifying subobjects, or related objects
(for example, already-recognizable features or other board positions) and
combining the positions in the space of those objects. A Functor Space is
the result of starting with a list of significant features or dimensions of
variation, which are represented by the columns. The judgment is the
degree to which each dimension D is a significant dimension of variation
of each object—i.e., the degree to which it is important to know D about
object X. This directly attacks the zeroing-in problem.

Ossorio (1965) constructed both of these spaces, and reported that
there were no difficulties in doing so. There has not, to my knowledge,
been a game playing program constructed using this approach.

Medical Diagnosis

Johannes (1977) addressed the problem of thyroid disorder diagnosis
by simulating the judgment of qualified physicians. The system takes in a
set of patient characteristics. It uses a Diagnosis Space to make an initial
diagnosis. It then uses a Test Space to make recommendations of tests to
be done. The Diagnosis Space is then used to revise the initial diagnosis in
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light of the known test results. As an attempt to simulate competent
physicians, Johannes’ program is highly successful: A panel of 7 physi-
cians reviewed the system’s diagnoses on 15 cases. The panel agreed with
the system’s initial diagnosis in 98.1% of the cases, the test recommenda-
tions in 91.4%, and the final diagnoses in 92.4% of the cases.

Chess

Chess has long been recognized as a paradigm case of human behavior.
Playing good chess (Master level and above) requires the ability to recog-
nize patterns, judge what is important in a position, whether a position
should be examined further, pick appropriate goals, pick appropriate
courses of action, and in general act on a great variety of chess concepts
that do not reduce to any physically definable set of characteristics of
boards and pieces. Currently, chess programs are limited in just that
way—they can only deal with reducible attributes, not concepts. By
giving the computer the ability to recognize instances of, and act on,
chess concepts, we can construct a program that plays chess like a human
does, i.e., by recognizing and acting on concepts. (How well it plays is a
separate issue, just as it is for humans.)

Such a system would operate as follows:

1. When a position is presented, the Strategy Space returns the name
of the strategy to use. (A strategy is a Process, and thus is described
by a Process Description. The reader is referred to Ossorio [1971/
1978a, 1971/1978b] for detailed discussions of Process Descriptions
and how they may be used.)

2. The Attribute Space and Tactics Space are used to recognize in-
stances of non-computable concepts and select the tactic(s) best
suited to the strategy in this case.

3. Using common board position analysis techniques (Jackson, 1974),
and probably a Move Space, a move is selected.

The strategy is what is being done—not an abstraction of reality as
strategies have usually been viewed. Selecting a particular tactic is an
instance of engaging in the strategy, for the strategy is a process that is
made up of stages and options such that the selection of a move is the
exercise of a particular tactic.

Problem Solving

The monkey-and-bananas problem (Jackson, 1974) is a standard toy
problem for illustrating reasoning: A monkey is in a room where a bunch
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of bananas is hanging from the ceiling, too high to reach. In the corner of
the room is a box. which is not under the bananas. How can the monkey
get the bananas?

This is a *‘toy”’ problem because of its size—the number of facts about
the situation, objects, and available actions is very small. A predicate
calculus formulation of the problem requires 11 axioms, and a proof that
the monkey can get the bananas can be given in 13 lines, starting from the
axioms (Jackson, 1974).

A human is in a room where a bunch of bananas is hanging from a
20-foot-high ceiling. The room is much like an ordinary living room; it has a
couch, a straight wooden chair, a wooden table, a table lamp, a pole lamp,
and a 4-foot-square rug on the floor. On the table are a box of 20 drinking
straws, a pile of 100 rubber bands, 5 toy balloons, 3 pencils, and a roll of
wire. On the rug are a toy truck, 6 paperback books, a cardboard box for
toys, and a floor lamp. How can the human get the bananas?

This example is far out of the rangé of toy problems. The number of
different objects (not counting the 100 identical rubber bands, etc.), the
number of properties of each, and the number of actions that each is
suitable for would result in an enormous number of axioms if the problem
were formalized. Even more important, this problem has a whole range of
problems not even present in the toy version: Which facts should be
represented? For example, a table has a certain size, shape, and weight. It
is suitable for a place to put objects, work at, etc. Less commonly, it
could be climbed on, sat on, etc. Straightforward, so far. However, it is
also a physical object, and so may be decomposed in various ways—Ilegs,
top, etc. Further, depending on its composition, it might be that the top
could be broken into long sticks. The same situation holds for many of the
objects in the room. Trying to represent the facts and the redescriptions
leads to a hopeless combinatorial explosion.

But a human does not face these problems; he reasons with the facts he
sees, and (depending on ability) acts on redescriptions if necessary. The
following is one way a person might act in the given situation:

Decide to try climbing.

Stack chair on table, and climb on top.

Notice bananas are closer, but not yet in reach.
Decide to hit bananas from top of stack.

. Take apart floor lamp, getting 6-foot-long center pole.
Notice this is not long enough to reach the bananas.
Wire the lamp pole to the table lamp.

Climb up, hit bananas with extended pole.

RN s W
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Let us examine this sequence, using a question and answer format to
pinpoint the judgments being made:

1.

10.

i1.

12.

13.

14.

15.

16.

Q. What known actions look good for getting the object out of
reach?
A. Climbing.

. Q. Does climbing require any props?

A. Yes—an object tall enough to help, and which can be climbed
on.

. Q. Any such objects present?

A. No.

. Q. Are there any known methods for creating tall climbable ob-

jects?
A. Yes—stacking objects.

. Q. Does stacking require any props?

A. Yes—at least 2 objects that can be lifted, one of which must
have a flat top.

Are such objects available?

Yes—table and chair.

Can bananas now be reached?

No.

Does this approach look reasonable, or should you start over?
Reasonable, keep stack for now.

From the top of the stack, what known actions look suitable for
etting the object out of reach?

Hitting object.

Does hitting require any props?

Yes—a stick long, strong, and light enough to be lifted.
Such a stick available?

No.

Any known methods for creating objects from other objects?
Yes—putting objects together, and taking them apart.

What objects have long, strong, light parts?

Floor lamp has long center pole. Table has legs. Chair has

gs.
Center pole of lamp long enough?

No.

(Repeat 12.)

Yes—putting objects together and taking them apart.
Any objects suitable for putting together with lamp pole?
Yes (marginally)—the table lamp.

BROPLOPROP»LO

POPOPOEPOPOPORPQOR



192 H. JOEL JEFFREY

17. Q. Any known methods for putting objects together?
A. Yes—tieing, gluing, nailing, screwing, bolting.
18. Q. Does tieing require props?
A. Yes—string.
19. Q. Any string present?
A. No.
20. Q. Any objects with similar relevant properties?
A. Yes—wire.
21. Q. Is new object (table-lamp-and-lamp-pole) long enough?
A. Yes.

Now notice that every one of the above steps in this complicated piece
of problem-solving behavior can be implemented by either simple lookup
in Object or Process Descriptions, or via one or more Judgment Spaces.
(Object Descriptions are also discussed in [Ossorio, 1971/1978a, 1971/
1978b].) Further, subobjects and combinations of objects need not have
any location in the Spaces in advance. Step 13, for example, involves
Property and Functor Spaces; Step 19 uses Relevance and Property
Spaces; Steps 1, 4, 9, and 12 use a Means-End Space. A Means-End Space
is a Judgment Space in which the columns represent means, the rows
represent goals, and the judgment is the degree to which each means is
suitable as a means to each end. This is discussed in Ossorio (1965).

Finally, it is of interest to see how the problem of combinatorial explo-
sion, which has long been recognized as the primary problem in Al,
simply does not arise here. In Step 13, for example, the floor lamp was
selected for dismantling by the (hypothetical) system. It was selected on
the basis of being the most highly rated object in the Judgment Spaces, at
each stage which required a judgment. Since a system operating with
Judgment Space is reproducing human judgments, the system will make
several attempts, or have several alternatives to consider in some stage,
just when a human does: when the knowledge does not indicate a clear
choice. In terms of the Judgment Space operation itself, this would be the
case, for example, if several alternative methods were rated 4 (indicating
“‘could be suitable, but you wouldn’t normally think of it for this goal’ ).

Automatic Fact Analysis

The automatic fact analysis problem is the problem of producing an
automatic system for analyzing the implications of facts. A paradigm case
is the problem of analyzing military intelligence. It is in some sense the
supreme Al problem. All of the difficulties of traditional AI must be faced
in attacking it, the worst being the problem of how to handle real world
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knowledge (Jackson, 1974). Certainly the best research with the Behav-
ioral Paradigm is the State of Affairs Information System (SAIS) designed
by Ossorio (1971/1978a). The SAIS forms a complete package for operat-
ing with Object and Process Descriptions, including Judgment Spaces for
the places where human fact analyzers exercise judgment. What Ossorio
did was to analyze, in terms of the Person Concept, what it is to do fact
analysis, and then use that analysis to design a system to reproduce those
achievements. This system has not yet been built. In my judgment, some
of the most fascinating and significant research in the near future will be
the implementation of a State of Affairs Information System.

CONCLUSION

A new paradigm for artificial intelligence has been presented: the Be-
havioral Paradigm. Whereas with the mechanistic paradigm one attempts
to treat a human as an information processing mechanism, and tries to
describe behavior by computational processes, with the Behavioral Para-
digm one treats the computer as a behaving person, and constructs
behavioral models for computational processes. In order for this
approach to be viable as a scientific paradigm, one must have a precise,
systematic formulation of the concepts of Persons, Behavior, and the
Real World. Descriptive Psychology is that formulation. It is also neces-
sary to have a technique by which the computer can deal with descrip-
tions of parts of the real world, without having to replace them with others
of a computable form. The technique for having the computer do non-
computable things is the Judgment Space. The Behavioral Paradigm is
thus a new concept of the computer, which is scientifically useful. As
such, it constitutes a new paradigm for the science of artificial intelli-
gence.
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